Pulling the Strings for the LCLS

Mar 05, 2008
Pulling the Strings for the LCLS
Yung-Yung Sung prepares a Beam Finder Wire card for transport

Technician Yung-Yung Sung huddles over her desk twisting carbon wires—each half the diameter of a single strand of human hair—along curved grooves on a ceramic plate. Even Sung's skilled fingers can't prevent wires from skittering rebelliously out of grooves and, at times, coiling up or breaking. Fitting the wires properly takes hours, and sometimes days.

Sung's detailed handiwork is well worth the effort, however, as it completes a device vital to the Linac Coherent Light Source (LCLS). The palm-sized device, called a Beam Finder Wire (BFW) card, ensures that LCLS X-rays will form a concentrated beam, a tiny fraction of a millimeter wide, over a 100-meter trajectory.

"There are a lot of people making different contributions to this small—but very important—piece of hardware," Physicist Clive Field said. "Without all of them it wouldn't happen at all."

The process of creating a BFW card begins with a machine, programmed with geometric code, that cuts a series of holes, slots and curved grooves into the surface of a ceramic slab. Then, if the machine's work is accurate to about a thousandth of an inch on critical dimensions, the white card is coated with an alloy mixture that gives it a dark gray outer layer. Only after this protective layer is applied does the card come to Sung for the final touches.

Once completed cards have passed additional inspections and precision measurements, they are mounted on machines built by collaborators from Argonne National Laboratory.

When the LCLS is up and running, the machinery will move wires in steps across the trajectory of the electron bunches in the beam pipe. When wires connect with pulses from the beam, the interaction will scatter a few electrons and these scattered particles will be picked up in a detector.

By detecting these scattered particles and noting the wire position when it intercepts the center of the electron beam, researchers will be able to locate the beam to within an astoundingly small uncertainty: the width of a human hair horizontally and a quarter of this vertically.

Wire card scanners are one of a suite of diagnostic detectors designed to give LCLS operators the highest degree of control possible over the electron beam. The undulators, where the X-rays are produced, require that the electron beam adhere to a very rigid set of parameters before X-ray laser light can even begin to be produced. Knowing the electron beam's precise position will allow undulator sections to be accurately aligned, so X-rays will follow the correct trajectory along its 100 meter length.

"The wires will get you to the point where you have an X-ray signal to work with," said Field. "But it will only be the beginning of producing LCLS X-rays in a coherent manner."

Source: by Matt Cunningham, SLAC

Explore further: Could 'Jedi Putter' be the force golfers need?

add to favorites email to friend print save as pdf

Related Stories

First radar vision for Copernicus

1 minute ago

Launched on 3 April, ESA's Sentinel-1A satellite has already delivered its first radar images of Earth. They offer a tantalising glimpse of the kind of operational imagery that this new mission will provide ...

New approach needed to deal with increased flood risk

17 minutes ago

Considering the impacts of climate change on flood risk may not be effective unless current risk is managed better, according to new research from the University of Bristol published today in the Journal ...

Robotics goes micro-scale

21 minutes ago

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Biologists help solve fungi mysteries

33 minutes ago

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Recommended for you

Could 'Jedi Putter' be the force golfers need?

Apr 18, 2014

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

Better thermal-imaging lens from waste sulfur

Apr 17, 2014

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

User comments : 0

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...