Pulling the Strings for the LCLS

Mar 05, 2008
Pulling the Strings for the LCLS
Yung-Yung Sung prepares a Beam Finder Wire card for transport

Technician Yung-Yung Sung huddles over her desk twisting carbon wires—each half the diameter of a single strand of human hair—along curved grooves on a ceramic plate. Even Sung's skilled fingers can't prevent wires from skittering rebelliously out of grooves and, at times, coiling up or breaking. Fitting the wires properly takes hours, and sometimes days.

Sung's detailed handiwork is well worth the effort, however, as it completes a device vital to the Linac Coherent Light Source (LCLS). The palm-sized device, called a Beam Finder Wire (BFW) card, ensures that LCLS X-rays will form a concentrated beam, a tiny fraction of a millimeter wide, over a 100-meter trajectory.

"There are a lot of people making different contributions to this small—but very important—piece of hardware," Physicist Clive Field said. "Without all of them it wouldn't happen at all."

The process of creating a BFW card begins with a machine, programmed with geometric code, that cuts a series of holes, slots and curved grooves into the surface of a ceramic slab. Then, if the machine's work is accurate to about a thousandth of an inch on critical dimensions, the white card is coated with an alloy mixture that gives it a dark gray outer layer. Only after this protective layer is applied does the card come to Sung for the final touches.

Once completed cards have passed additional inspections and precision measurements, they are mounted on machines built by collaborators from Argonne National Laboratory.

When the LCLS is up and running, the machinery will move wires in steps across the trajectory of the electron bunches in the beam pipe. When wires connect with pulses from the beam, the interaction will scatter a few electrons and these scattered particles will be picked up in a detector.

By detecting these scattered particles and noting the wire position when it intercepts the center of the electron beam, researchers will be able to locate the beam to within an astoundingly small uncertainty: the width of a human hair horizontally and a quarter of this vertically.

Wire card scanners are one of a suite of diagnostic detectors designed to give LCLS operators the highest degree of control possible over the electron beam. The undulators, where the X-rays are produced, require that the electron beam adhere to a very rigid set of parameters before X-ray laser light can even begin to be produced. Knowing the electron beam's precise position will allow undulator sections to be accurately aligned, so X-rays will follow the correct trajectory along its 100 meter length.

"The wires will get you to the point where you have an X-ray signal to work with," said Field. "But it will only be the beginning of producing LCLS X-rays in a coherent manner."

Source: by Matt Cunningham, SLAC

Explore further: Physicists consider implications of recent revelations about the universe's first light

add to favorites email to friend print save as pdf

Related Stories

First-of-its-kind NASA space-weather project

3 hours ago

A NASA scientist is launching a one-to-two-year pilot project this summer that takes advantage of U.S. high-voltage power transmission lines to measure a phenomenon that has caused widespread power outages ...

US urged to drop India WTO case on solar

3 hours ago

Environmentalists Wednesday urged the United States to drop plans to haul India to the WTO to open its solar market, saying the action would hurt the fight against climate change.

Recommended for you

Steering chemical reactions with laser pulses

11 hours ago

With ultra-short laser pulses, chemical reactions can be controlled at the Vienna University of Technology. Electrons have little mass and are therefore influenced by the laser, whereas the atomic nuclei ...

Grasp of SQUIDs dynamics facilitates eavesdropping

Apr 22, 2014

Theoretical physicists are currently exploring the dynamics of a very unusual kind of device called a SQUID. This Superconducting Quantum Interference Device is a highly sensitive magnetometer used to measure ...

UK's lead in physics healthy but insecure

Apr 22, 2014

The quantity and quality of scientific papers produced by UK physicists indicates that the UK remains in an elite group of nations contributing at the leading edge of physics research.

User comments : 0

More news stories