Synthetic peptoids hold forth promise for new antibiotics

Mar 05, 2008

Drug-resistant bacterial infections are a growing concern, and much research has been devoted to finding new classes of antibiotics to fight them.

Stanford researchers may have found some answers in peptoids, a class of manmade molecules very similar to natural proteins that play an important role in the human immune system.

"Peptoids could be an entirely new class of antibiotic drugs, which would be hugely important," said Annelise Barron, associate professor of bioengineering at Stanford.

Anti-microbial peptides are evolutionarily ancient infection fighters found in organisms from grasses to amphibians to humans. In the human body, the peptides show up in the mouth, lungs and intestines, and in body fluids like sweat and tears. Anti-microbial peptides target a variety of pathogens and generally kill by punching holes in the invaders' cell membranes.

"You can think of these types of antibiotics as the body's 'land mines' against invading pathogens," Barron said.

Because of this, bacterial resistance to the peptides is rarely observed. Bacteria can thwart other anti-microbial drugs by inactivating the drug, pumping it out of the cell, altering the drug's binding site so it is no longer recognized or working around the specific cell part attacked by the drug.

But it is much tougher for bacteria to develop resistance to the damage caused by anti-microbial peptides. "The bacteria can't fundamentally alter their entire outer membrane," Barron said.

Such peptides seem like a natural choice for new antibiotics. One type showed promise in the treatment of diabetic foot ulcers. Unfortunately, their applicability has been limited so far to topical use; natural peptides are quickly degraded in the stomach. Thus, a peptide-based drug must be injected rather than swallowed. The peptides are quickly broken down in the bloodstream as well, and must therefore be injected in high concentrations.

Peptoids are synthetic molecules—oligomers—with structures that are similar to those of anti-microbial peptides, and offer the potential to overcome many of the problems associated with the natural molecules. Peptoids are much less susceptible to degradation in the stomach and bloodstream than peptides, so they will last longer in the body. They are also less expensive to produce than peptides, Barron said.

Barron and her colleagues had these peptoids tested against six strains of pathogenic bacteria. The peptoids showed anti-bacterial properties almost identical to those of the natural peptides.

"They did beautifully," Barron said. "They appear to be broad-spectrum antibiotics that interact and interfere with bacterial cell membranes analogously to the way these peptides do."

To see if the peptoids would be harmful to human cells, the researchers combined them with human red blood cells in the laboratory. They also mixed them with mammalian lung cells and skin cells. At their active concentrations, the peptoids left the mammalian cells unharmed.

Barron said that the next step is testing the peptoids in animal models of bacterial infection, and studies with mice are under way with collaborators.

"It's an exciting area," she said. "Society desperately needs new antibiotics, and I think this family of molecules has huge clinical promise."

PNAS paper: www.pnas.org/cgi/content/abstract/0708254105v1

Source: by Shelby Martin, Stanford University

Explore further: US scientists make embryonic stem cells from adult skin

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Leeches help save woman's ear after pit bull mauling

Apr 18, 2014

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

New pain relief targets discovered

Apr 17, 2014

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

SDMike
not rated yet Mar 05, 2008
Need to identify Peptoids that attack cancer cells. There are differences between normal cell and cancer cell membranes that such materials could exploit.

More news stories

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Study says we're over the hill at 24

(Medical Xpress)—It's a hard pill to swallow, but if you're over 24 years of age you've already reached your peak in terms of your cognitive motor performance, according to a new Simon Fraser University study.

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.