New method to estimate sea ice thickness

Mar 05, 2008

Scientists recently developed a new modeling approach to estimate sea ice thickness. This is the only model based entirely on historical observations.

The model was developed by scientists with the U.S. Geological Survey and the Russian Academy of Sciences, Moscow.

Using this new technique, the thickness of Arctic sea ice was estimated from 1982 to 2003. Results showed that average ice thickness and total ice volume fluctuated together during the early study period, peaking in the late 1980s and then declining until the mid-1990s. Thereafter, ice thickness slightly increased but the total volume of sea ice did not increase.

Scientists propose that the volume stayed constant during the study’s latter years because while the ice was thickening in the high latitudes of the Arctic, the surrounding sea ice was melting. Sea ice, however, can only become so thick, and if Arctic sea ice continues to melt, the total volume of sea ice in the Arctic will decrease.

The most dramatic losses in sea ice cover have occurred since 2003, and as scientists acquire newer data, they will apply the new model to study recent years of ice thickness and volume change.

This modeling approach uses sea ice motion data to follow parcels of ice backward in time at monthly intervals for up to 3 years while accumulating a history of the solar radiation and air temperature to which the ice was exposed. The model was constructed by fitting these data with an ice parcel’s known thickness to determine how the thickness of sea ice changes in response to different environmental conditions. Data on the known thickness are obtained from measurements by submarine cruises and surface coring missions.

“Sea ice is affected by the accumulation of environmental factors to which it has been exposed,” said USGS Director Mark Myers. “Understanding the natural variability of sea ice thickness is critical for improving global climate models. Sea ice regulates energy exchange and plays an important role in the Earth’s climate system.”

This model, built on historical observations, complements thermodynamic models that simulate ice thickness. Science benefits from having different models. Comparing different model outputs can help improve predictive capabilities. Many scientists worldwide are using satellite and ground observations of the Arctic’s atmosphere, ice and ocean to gain a better understanding of how changes at the top of the world affect ecosystems both locally and globally.

Source: United States Geological Survey

Explore further: Canada to push Arctic claim in Europe

add to favorites email to friend print save as pdf

Related Stories

Snow has thinned on Arctic sea ice

Aug 13, 2014

From research stations drifting on ice floes to high-tech aircraft radar, scientists have been tracking the depth of snow that accumulates on Arctic sea ice for almost a century. Now that people are more ...

Tracking the breakup of Arctic summer sea ice

Jul 16, 2014

As sea ice begins to melt back toward its late September minimum, it is being watched as never before. Scientists have put sensors on and under ice in the Beaufort Sea for an unprecedented campaign to monitor ...

Recommended for you

Canada to push Arctic claim in Europe

9 hours ago

Canada's top diplomat will discuss the Arctic with his Scandinavian counterparts in Denmark and Norway next week, it was announced Thursday, a trip that will raise suspicions in Russia.

Severe drought is causing the western US to rise

14 hours ago

The severe drought gripping the western United States in recent years is changing the landscape well beyond localized effects of water restrictions and browning lawns. Scientists at Scripps Institution of ...

A NASA satellite double-take at Hurricane Lowell

14 hours ago

Lowell is now a large hurricane in the Eastern Pacific and NASA's Aqua and Terra satellites double-teamed it to provide infrared and radar data to scientists. Lowell strengthened into a hurricane during the ...

User comments : 0