PANTHER sensor quickly detects pathogens

Mar 04, 2008
PANTHER sensor quickly detects pathogens
This prototype of the PANTHER device is about one cubic foot and weighs 37 pounds. Photo courtesy / MIT Lincoln Laboratory

Researchers at MIT Lincoln Laboratory have developed a powerful sensor that can detect airborne pathogens such as anthrax and smallpox in less than three minutes.

The new device, called PANTHER (for PAthogen Notification for THreatening Environmental Releases), represents a "significant advance" over any other sensor, said James Harper of Lincoln Lab's Biosensor and Molecular Technologies Group. Current sensors take at least 20 minutes to detect harmful bacteria or viruses in the air, but the PANTHER sensors can do detection and identification in less than 3 minutes.

The technology has been licensed to Innovative Biosensors, Inc. (IBI) of Rockville, Md. In January, IBI began selling a product, BioFlash, that uses the PANTHER technology.

"There is a real need to detect a pathogen in less than three minutes, so you have time to take action before it is too late," said Harper, the lead scientist developing the sensor.

The PANTHER sensor uses a cell-based sensor technology known as CANARY (after the birds sent into mines to detect dangerous gases), and can pick up a positive reading with only a few dozen particles per liter of air.

The device could be used in buildings, subways and other public areas, and can currently detect 24 pathogens, including anthrax, plague, smallpox, tularemia and E. coli.

"There's really nothing out there that compares with this," said Todd Rider of Lincoln Lab's Biosensor and Molecular Technologies Group, who invented the CANARY sensor technology.

Rider started developing CANARY in 1997 when he realized that there were no sensors available that could rapidly detect pathogens. His idea was to take advantage of nature's own defense system--specifically the B cells that target pathogens in the human body. "B cells in the body are very fast and very sensitive," Rider said.

The CANARY concept uses an array of B cells, each specific to a particular bacterium or virus. The cells are engineered to emit photons of light when they detect their target pathogen. The device then displays a list of any pathogens found.

CANARY is the only sensor that makes use of immune cells. Other available sensors are based on immunoassays or PCR (polymerase chain reaction), which take much longer and/or are not as sensitive as CANARY.

Rider and colleagues first reported the success of CANARY (which stands for Cellular Analysis and Notification of Antigen Risks and Yields) in the journal Science in 2003. Since then, they have been working to incorporate the technology into a portable device that could be used in a variety of settings where environmental threats might exist.

The new device, PANTHER, takes the CANARY technology and combines it with an air sampler that brings pathogens into contact with the detector cells. The prototype sensor is about a cubic foot and weighs 37 pounds and is well suited to building-protection applications. With minor modifications it could also enhance biological detection capabilities for emergency responders.

CANARY has been tested in rural and coastal environments as well as urban ones. It could eventually be used on farms or in food-processing plants to test for contamination by E. coli, salmonella, or other food-borne pathogens.

Another potential application is in medical diagnostics, where the technology could be used to test patient samples, giving rapid results without having to send samples to a laboratory.

"Instead of going to the doctor's office and waiting a few days for your test results, with CANARY you could get the results in just a minute or so," said Rider.

Source: MIT

Explore further: Researchers use passive UHF RFID tags to detect how people interact with objects

Related Stories

Quantum dot TVs are unveiled at China tech expo

2 hours ago

At this month's China Information Technology Expo (CITE) event, a headline-maker was the launch of quantum dot televisions, by QD Vision and Konka, the consumer electronics company. QD Vision's calling card ...

A call to US educators: Learn from Canada

5 hours ago

As states and the federal government in the U.S. continue to clash on the best ways to improve American education, Canada's Province of Ontario manages successful education reform initiatives that are equal parts cooperation ...

Recommended for you

Intellectual property in 3D printing

Apr 16, 2015

The implications of intellectual property in 3D printing have been outlined in two documents created for the UK government by Bournemouth University's Dinusha Mendis and Davide Secchi, and Phil Reeves of Econolyst Ltd.

World-record electric motor for aircraft

Apr 16, 2015

Siemens researchers have developed a new type of electric motor that, with a weight of just 50 kilograms, delivers a continuous output of about 260 kilowatts – five times more than comparable drive systems. ...

Space open for business, says Electron launch system CEO

Apr 15, 2015

Space, like business, is all about time and money, said Peter Beck, CEO of Rocket Lab, a US company with a New Zealand subsidiary. The problem, he added, is that, in cost and time, space has remained an incredibly ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

superhuman
not rated yet Mar 05, 2008
It is based on alive B cells? How are they kept alive then? Do you have to provide them with fresh medium etc on a daily basis as with normal cell culture?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.