Tiny polyps need 2 kinds of carbon to survive coral bleaching

Mar 04, 2008
Bleached Montipora capitata or 'rice coral'
Bleached Montipora capitata or "rice coral". Image courtesy Andrea Grottoli, Ohio State University.

How well ocean reefs recover from the growing damage caused by warming sea temperatures depends both on how much the tiny coral polyps can eat, and how healthy they can keep the microscopic algae that live inside their bodies.

New research intended to dissect one of the planet’s most fertile and endangered ecosystems may change the way scientists look at this symbiotic partnership, shifting it from a case where the polyps function only as landlords to one where the tiny creatures actually nurture their algae.

Preliminary findings were presented today in two papers at the 2008 Ocean Sciences meeting in Orlando. The research focuses on the key role that carbon plays on the recovery of damaged coral reefs.

Andrea Grottoli, an assistant professor of earth sciences at Ohio State University, has spent the last 14 years studying two common forms of coral that populate the reefs near the Hawaii Institute of Marine Biology.

Two years ago, she reported that one of the corals she tested, Montipora capitata, or “rice” coral, was able to recover rapidly from bleaching because it increased its rate of feeding five-fold compared to how fast another form, Porites compressa, or “finger” coral, fed.

This strategy of gluttony enabled Montipora to survive the long-term damage that corals suffer when sea temperature climbs beyond the narrow 4 – 6 degree C range, where Porites might not.

What wasn’t clear from the earlier experiments was how the corals actually made use of carbon for their survival.

“Corals get carbon in two ways,” she said, “either through photosynthesis by the algae kept inside their bodies, or by feeding on the zooplankton that comprise their diets.”

While corals can get all the carbon they need from the algae’s photosynthesis, “they still get some of what they need through normal feeding.”

But when seawater temperatures climb, the coral will either jettison the algae altogether, or the algal cells will lose the pigments essential for photosynthesis to deliver the needed carbon. Without the algae, corals appear white, which is often referred to as “bleached.” Prolonged bleaching can lead to the coral dying. Either case presents a serious threat to the tiny creatures.

Grottoli wanted to determine exactly how the coral obtained its carbon and, in turn, how it used the material to survive. She placed samples of both healthy and bleached corals of both types in tanks mimicking actual ocean conditions. In one set of experiments, she pumped in seawater containing higher-than-normal levels of a carbon isotope, C-13. In another, she fed the corals zooplankton that were also heavily laced with the carbon isotope.

“We could track the carbon and determine if it was coming from either the photosynthetic process or from the animals’ feeding,” she said, “and then see how it was ultimately used by the animals. We could tell whether the process differed if the corals were healthy or bleached, or one species or the other.”

The experiments readily showed, as expected, that healthy corals had much more of the seawater-labeled carbon than did bleached corals, she said.

“But we could also see that in the healthy coral, the carbon was transferred into the algae where it is used for photosynthesis, and ultimately ends up in the animals’ skeleton,” Grottoli said. “So the corals are using photosynthetic carbon for calcification and to meet their daily metabolic demands.”

The carbon consumed while feeding, however, isn’t ending up in the skeleton, she said. Instead, it’s ending up both in the tissue of the coral polyp or inside the algae. With bleached samples, the coral is apparently feeding carbon to the algae.

“That’s what our work suggests and this is new. We’ve known that nutrients like nitrogen and phosphorus are exchanged in this way but nobody ever knew that this was happening with carbon,” she said.

“This suggests that there is a great deal more coupling between the coral and the algae than we had thought. Once the coral gets the carbon from feeding into its system, it locks it in, using it for energy storage and tissue growth, and when bleached, to feed the algae.”

The bottom line, Grottoli says, is that the photosynthetic carbon is used for metabolic demands and calcification, while the carbon gained from feeding is used for tissue growth.

“Without both forms, the coral simply cannot fully recover,” she said.

“All corals need both photosynthesis and feeding for recovery and the rate of those two processes is the key to whether the coral can actually meet all its metabolic demands and ultimately recover.”

Source: Ohio State University

Explore further: New insights into how different tissues establish their biological and functional identities

add to favorites email to friend print save as pdf

Related Stories

Dissolving the future of coral reefs

Apr 10, 2014

Swimming through the liquid turquoise waters off the island of Viti Levu, Fiji, I am surrounded by iridescent fish of all colors, schooling around healthy branching corals. With a slight movement of my fins ...

Sponges that sponge off bacteria

Apr 08, 2014

Medical compounds harvested from a marine sponge are actually produced by symbiotic bacteria living in the sponges.

Sydney switches off for Earth Hour

Mar 29, 2014

Sydney's Opera House and Harbour Bridge plunged into darkness Saturday for the Earth Hour environmental campaign, among the first landmarks around the world to dim their lights for the event.

Plankton make scents for seabirds and a cooler planet

Mar 20, 2014

The top predators of the Southern Ocean, far-ranging seabirds, are tied both to the health of the ocean ecosystem and to global climate regulation through a mutual relationship with phytoplankton, according ...

Recommended for you

Researchers develop new model of cellular movement

2 hours ago

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

User comments : 0

More news stories

Researchers develop new model of cellular movement

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Under some LED bulbs whites aren't 'whiter than white'

For years, companies have been adding whiteners to laundry detergent, paints, plastics, paper and fabrics to make whites look "whiter than white," but now, with a switch away from incandescent and fluorescent lighting, different ...