Rare syndrome provides clues on obesity, blood pressure

Mar 03, 2008

University of Iowa researchers have found a clue about how resistance to the hormone leptin might disrupt the brain signals that tell the body when to stop eating. The research, which focused on the rare genetic disorder Bardet-Biedl syndrome (BBS), also found an association between leptin resistance and high blood pressure.

The findings, which were based on mouse models developed at the UI, have implications for treating BBS as well as obesity and high blood pressure in people without BBS. The study appeared online March 3 in the Journal of Clinical Investigation.

"Bardet-Biedl syndrome is rare but its symptoms, including obesity and increased risk of heart disease, are similar to problems faced by many people without the syndrome," said Kamal Rahmouni, Ph.D., the study's principal investigator and assistant professor of internal medicine at the UI Roy J. and Lucille A. Carver College of Medicine. "Leptin normally suppresses appetite and increases caloric use. The more we know about how leptin and gene defects affect people with BBS, the more likely it is that we can improve treatment for them and people with similar symptoms."

The research builds on previous BBS findings, including research led by current study team member Val Sheffield, M.D., Ph.D., the Martin and Ruth Carver Chair in Genetics and professor of pediatrics at the UI and a Howard Hughes Medical Institute investigator.

Fewer than one in 10,000 people have BBS. Sheffield, who has discovered or co-discovered the majority of the 12 known BBS genes, developed BBS mice that have the same features as the human condition. The study used a mouse model without BBS and three mouse models that each lacks a protein (Bbs2, Bbs4 or Bbs6) due to a BBS gene deletion.

The team measured daily food intake and body weight of each mouse. Some mice also received daily leptin injections. Mice without BBS lost weight when injected with leptin. However, the mice with any of the three types of BBS gene defects did not respond to leptin and gained weight.

Rahmouni, who has expertise in metabolism and obesity, said the hormone leptin is an obvious candidate when looking at causes of weight gain.

"Leptin is made in adipose (fat) tissue and is supposed to decrease fat stores. However, if we find high levels of it in the plasma, and people still are obese, we know it's not acting correctly and that there is leptin resistance," he said.

The team also found that even very young mice with BBS, whose body weights were the same as the non-BBS mice, had high levels of leptin in the plasma, indicating leptin resistance. The team then looked at a specific brain region of mice with BBS to understand why this occurred.

"We know that leptin regulates body weight and food intake through the hypothalamus in the brain. In the mice with BBS, we saw that Pomc, one of the three main genes normally regulated by leptin, was not properly regulated," Rahmouni said.

"This finding allowed us to pinpoint a very specific defect that explains why these mice are obese. The brain normally uses the Pomc gene to tell the body to stop eating, but in the animals with BBS, it doesn't work and so the mice won't feel full. We know that people without this gene have the same symptoms as the mice in our study, so the finding is meaningful," he added.

Rahmouni and colleagues will next examine the specific deficit in the neurons in the brain that might cause the problem with the Pomc (pronounced "pom-c") gene.

In another aspect of the study, the team saw that two of the three mouse models with BBS protein problems (Bbs4 and Bbs6) had high blood pressure. Recent research published by another institution has pointed to the same problem in humans with the same gene defects.

The UI team found that using a chemical to block neurotransmission in mice with the Bbs4 and Bbs6 gene defects lowered blood pressure.

"Because there are so few people with BBS, mouse models are very helpful in trying to understand the blood pressure problem," Rahmouni said. "Currently, there is no specific recommendation on what drug or level of drug to use to treat hypertension in BBS patients. In addition, this work may lead to improved treatment of hypertensive patients without BBS. We hope to learn more about the mechanism in order to improve and even customize treatment."

Source: University of Iowa

Explore further: Growing a blood vessel in a week

add to favorites email to friend print save as pdf

Related Stories

Russia turns back clocks to permanent Winter Time

10 hours ago

Russia on Sunday is set to turn back its clocks to winter time permanently in a move backed by President Vladimir Putin, reversing a three-year experiment with non-stop summer time that proved highly unpopular.

UN climate talks shuffle to a close in Bonn

10 hours ago

Concern was high at a perceived lack of urgency as UN climate negotiations shuffled towards a close in Bonn on Saturday with just 14 months left to finalise a new, global pact.

Microsoft beefs up security protection in Windows 10

14 hours ago

What Microsoft users in business care deeply about—-a system architecture that supports efforts to get their work done efficiently; a work-centric menu to quickly access projects rather than weather readings ...

New iPad cellular models have Apple SIM flexibility

Oct 19, 2014

Cellular-enabled iPad models are under a new paradigm, said AppleInsider, regarding the Apple SIM. Apple's newest iPad models with cellular connectivity use a SIM card which tech sites said could eventually ...

Comet Siding Spring whizzes past Mars (Update)

Oct 19, 2014

A comet the size of a small mountain and about as solid as a pile of talcum powder whizzed past Mars on Sunday, dazzling space enthusiasts with the once-in-a-million-years encounter.

Recommended for you

Growing a blood vessel in a week

Oct 24, 2014

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 0