Head injuries result in widespread brain tissue loss one year later

Mar 03, 2008

In a rare, large-scale study of traumatic brain injury (TBI) patients who span the full range of severity from mild to moderate and severe, Canadian researchers have found that the more severe the injury, the greater the loss of brain tissue, particularly white matter.

“This is an important finding as TBI is one of the most common forms of disability,” said Dr. Brian Levine, Senior Scientist at Baycrest’s Rotman Research Institute and lead author of the study which is published in the March 4, 2008 issue of Neurology, the medical journal of the American Academy of Neurology.

TBI causes both localized damage through bruises or bleeds, as well as more diffuse damage through disconnection of brain cells, which ultimately causes cell death. The localized damage is easier to detect with the naked eye than diffuse damage. Yet both kinds of damage contribute to difficulties with concentration, working memory, organizing and planning (vital skills for holding a job), and mood changes often experienced by people following TBI.

According to Dr. Levine, “It can be hard to determine why patients are so disabled, and this study offers a clue to the nature of the brain damage causing this disability.”

In the study, 69 TBI patients were recruited from Sunnybrook Health Sciences Centre, Canada’s largest trauma centre, one year after injury. Eighty percent of the patients sustained their injury from a motor vehicle accident. Injury severity was determined by the depth of coma or consciousness alteration at the time of the initial hospitalization. Some patients had minor injuries and were discharged immediately, whereas others had more severe injuries with extended loss of consciousness lasting weeks. Twelve healthy, non-injured participants were recruited as the comparison group.

Subjects’ brains were scanned with high resolution magnetic resonance imaging (MRI) which provides the most sensitive picture of volume changes in the brain. In addition to using an expert radiologist’s qualitative reading of the MRI scans, which is the standard approach used in hospitals and clinics, the researchers processed the images with a computer program that quantified volumes in 38 brain regions.

The computerized analysis revealed widespread brain tissue loss that was closely related to the severity of the TBI sustained one year earlier. “We were surprised at the extent of volume loss, which encompassed both frontal and posterior brain regions,” said Dr. Levine. Brain tissue loss was greatest in the white matter (containing axons which can be compared to telephone wire interconnectivity), but also involved grey matter (containing the cell bodies important for information processing).

Investigators were surprised to find that volume loss was widespread even in TBI patients who had no obvious lesions on their MRI scans. Even the mild TBI group contributed to the pattern of volumetric changes such that this group was reliably differentiated from the non-injured, healthy group.

“A significant blow to the head causing loss of consciousness can cause extensive reduction of brain tissue volume that may evade detection by traditional qualitative radiological examination,” Dr. Levine noted.

He is leading follow-up studies on the same group of TBI patients to examine more closely the significance of localized white and grey matter volume loss on behaviour.

Source: Baycrest Centre for Geriatric Care

Explore further: Not just for the holidays, mistletoe could fight obesity-related liver disease

add to favorites email to friend print save as pdf

Related Stories

Nanotubes may restore sight to blind retinas

Dec 02, 2014

The aging process affects everything from cardiovascular function to memory to sexuality. Most worrisome for many, however, is the potential loss of eyesight due to retinal degeneration.

Artificial retina could someday help restore vision

Nov 12, 2014

The loss of eyesight, often caused by retinal degeneration, is a life-altering health issue for many people, especially as they age. But a new development toward a prosthetic retina could help counter conditions ...

New technologies are improving the lives of seniors

Aug 14, 2014

If Betty Lewis falls at the Edgemere senior living community, a pendant she wears around her neck will alert the staff. The device picks up the motion of the fall and notifies staff members at the North Dallas facility so ...

Body by smartphone

Jul 30, 2014

We love our smartphones. Since they marched out of the corporate world and into the hands of consumers about 10 years ago, we've relied more and more on our iPhone and Android devices to organize our schedules, ...

Recommended for you

Stem cells faulty in Duchenne muscular dystrophy

9 hours ago

Like human patients, mice with a form of Duchenne muscular dystrophy undergo progressive muscle degeneration and accumulate connective tissue as they age. Now, researchers at the Stanford University School of Medicine have ...

Here's how the prion protein protects us

14 hours ago

The cellular prion protein (PrPC) has the ability to protect the brain's neurons. Although scientists have known about this protective physiological function for some time, they were lacking detailed knowledge ...

Regulation of maternal miRNAs in early embryos revealed

15 hours ago

The Center for RNA Research at the Institute for Basic Science (IBS) has succeeded in revealing, for the first time, the mechanism of how miRNAs, which control gene expression, are regulated in the early embryonic stage.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.