The March of the Carbon Nanotubes

Mar 03, 2008
The March of the Carbon Nanotubes
The work of Anders Nilsson (Left) and Anton Nikitin might pave future directions for alternative energy research.

Stanford Synchrotron Radiation Laboratory (SSRL) researchers have surpassed by a surprising margin the Department of Energy's goal for storing hydrogen within a unique material called carbon nanotubes. The pioneering result, published in the American Chemical Society's Nano Letters, brings us one step closer to realizing hydrogen as a source of energy.

"We are trying to find a way to make hydrogen-power affordable," graduate student Anton Nikitin said. "Current vehicle prototypes cost over two million dollars. Sustainable developments will rise only from examining this problem piece by piece."

Hydrogen—the most abundant element in the universe—is an attractive carrier of renewable energy. It can be used in fuel cells to produce electricity, with the only byproduct being water. However, developing safe and efficient methods of storing hydrogen remains a challenge.

Current methods for storing hydrogen are expensive and inefficient. Storing hydrogen in tanks made from costly composite materials requires dangerously high pressures of up to 10,000 pounds per square inch. Compressing hydrogen is expensive, and the energy required outweighs the benefits.

Nikitin and his colleagues were able to pack seven percent by weight hydrogen into carbon nanotubes through the formation of bonds with carbon atoms. The chemically grown nanotubes are made of pure carbon and have walls a single atom thick. Because single-walled nanotubes are essentially all surface area, they can theoretically store an enormous proportion of hydrogen, making it a promising storage medium.

Demand for carbon nanotubes—in fields ranging from electronics to medicine—adds to the excitement surrounding this material, but don't expect hydrogen energy to appear overnight. Associate Professor Anders Nilsson estimates that it will be 20 years before all of the pieces come together.

"The world is possibly facing the biggest challenge of modern civilization," Nilsson said, "and science plays a pivotal role in developing a long-term solution."

Source: by Matt Cunningham, SLAC

Explore further: A crystal wedding in the nanocosmos

add to favorites email to friend print save as pdf

Related Stories

Boron 'buckyball' discovered

Jul 13, 2014

The discovery 30 years ago of soccer-ball-shaped carbon molecules called buckyballs helped to spur an explosion of nanotechnology research. Now, there appears to be a new ball on the pitch.

Chemists develop novel catalyst with two functions

Jul 09, 2014

Chemists at the Ruhr-Universität Bochum have made a decisive step towards more cost-efficient regenerative fuel cells and rechargeable metal-air batteries. They developed a new type of catalyst on the basis ...

Evidence confirms combustion theory

Jul 01, 2014

(Phys.org) —Researchers at the Department of Energy's Lawrence Berkeley National Lab (Berkeley Lab) and the University of Hawaii have uncovered the first step in the process that transforms gas-phase molecules ...

Nanotube forests drink water from arid air

Jun 11, 2014

(Phys.org) —If you don't want to die of thirst in the desert, be like the beetle. Or have a nanotube cup handy. New research by scientists at Rice University demonstrated that forests of carbon nanotubes ...

Recommended for you

A crystal wedding in the nanocosmos

Jul 23, 2014

Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), the Vienna University of Technology and the Maria Curie-Skłodowska University Lublin have succeeded in embedding nearly perfect semiconductor ...

PPPL studies plasma's role in synthesizing nanoparticles

Jul 22, 2014

DOE's Princeton Plasma Physics Laboratory (PPPL) has received some $4.3 million of DOE Office of Science funding, over three years, to develop an increased understanding of the role of plasma in the synthesis ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

zevkirsh
not rated yet Mar 03, 2008
The pioneering result, published in the American Chemical Society's Nano Letters, brings us one step closer to realizing hydrogen as a source of energy.

it's not a godamn source. stupid propoganda.
NeilFarbstein
1 / 5 (1) Mar 03, 2008
For who?
NeilFarbstein
1 / 5 (1) Mar 03, 2008
The nantional dairy council?
Graeme
not rated yet Mar 04, 2008
It still seems the cheapest way to store hydrogen is in the form of liquid hydrocarbons, which can store double what these tubes can. There are sure to be other applications though. Bring on the electric battery car.