'Innocent bystanders' can be the cause of tumor development

Mar 03, 2008

Tumor growth has commonly been viewed as a result of mutations in a given cell that will therefore proliferate uncontrollably. However, a study conducted at the University of Helsinki, Finland, has demonstrated that in certain type of gastrointestinal polyps, the cause of tumor development are mutations in the smooth muscle cells, previously regarded as “innocent bystanders”. The results emphasize the importance of interactions between tissue types, and open up possibilities to develop new treatment strategies targeting the intercellular signaling.

Gastrointestinal polyps are tumors that can both block the digestion and progress to cancer. The cell-type making up the bulk of the polyps and therefore responsible for the adverse effects are the hyper proliferating epithelial cells, which normally line the inner surface of the gastrointestinal tract.

Therefore studies addressing the possible mechanisms of polyp development have traditionally focused on epithelial cells. However, the results from professor Tomi Mäkelä’s research group demonstrate that origin of at least certain polyps is found elsewhere than in the pathologically growing epithelium. By restricting the mutations in mice to the smooth muscle cells that encircle the epithelium, researcher Pekka Katajisto discovered that deletion of the tumor suppressor gene Lkb1 leads to excessive proliferation of neighboring epithelial cells and tumor development.

The results demonstrate that Lkb1 deletion in smooth muscle cells disturbes the signaling between cells. Normally the smooth muscle cells appear to hold-back the proliferation of their neighboring epithelial cells by signals mediated by the growth factor TGFß, but this signaling is reduced in the studied tumors. As a consequence, the epithelium undergoes accelerated proliferation. The same intercellular signaling defect was also noted in the Peutz-Jeghers polyposis caused by hereditary LKB1 mutations.

The study results has been published in Nature Genetics (online) 2nd March, 2008.

Source: University of Helsinki

Explore further: Telomere extension turns back aging clock in cultured human cells, study finds

add to favorites email to friend print save as pdf

Related Stories

NASA spacecraft almost to Pluto: Smile for the camera!

30 minutes ago

NASA's New Horizons spacecraft is nearing the end of its nine-year voyage to Pluto, with just over 100 million miles (160 million kilometers) to go before reaching there this July. In the meantime—starting ...

Recommended for you

Gene may open door for improved keloid, scar treatment

Jan 23, 2015

Researchers at Henry Ford Hospital in Detroit have identified a gene that may offer a better understanding of how keloid scars develop and potentially open the door to improved treatment for the often painful, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.