Cancer-related protein may play key role in Alzheimer's disease

Feb 28, 2008

The cancer-related protein Akt may profoundly influence the fate of the tau protein, which forms bundles of tangled nerve cell fibers in the brain associated with Alzheimer’s disease, reports a new study led by researchers at the University of South Florida and the Mayo Clinic in Jacksonville, FL.

The study was published online Feb. 21 in the early edition of the Proceedings of the National Academy of Sciences. The findings may provide another piece of the puzzle in figuring out how tau proteins can poison nerve cells in the brain.

Akt is known to increase cancer cell survival capability and has become a target in the development of some cancer-inhibitor drugs. The abnormal accumulation of tau protein tangles kills nerve cells and is considered one of the hallmarks of Alzheimer’s disease.

“This study describes for the first time a new function for the cancer-related protein Akt – one that may help promote Alzheimer’s disease pathology,” said lead author Chad Dickey, PhD, assistant professor of molecular pharmacology and physiology at USF. “We found that increased amounts of Akt may prevent the removal of abnormal proteins, such as tau, causing these proteins to accumulate and disrupt the balance within the cells.”

While this Akt-induced imbalance might result in cancer cells continuing to divide uncontrollably, Dr. Dickey suggests it likely has a different effect in Alzheimer’s disease. “The nerve cells may try to divide in the brain, but cannot, and therefore die,” he said. “Thus regulating levels of Akt, rather than its activity, may be beneficial to sufferers of diseases of aging, such as cancer, Alzheimer’s and even diabetes.”

Source: University of South Florida

Explore further: Everything you wanted to know about mitochondrial mutations but were afraid to ask

add to favorites email to friend print save as pdf

Related Stories

Cellular memory of stressful situations

Jan 28, 2015

Stress is unhealthy. The cells use therefore a variety of mechanisms to deal with stress and avert its immediate threat. However, certain stressful situations leave marks that go beyond the immediate response; ...

Study uncovers secrets of a clump-dissolving protein

Jan 22, 2015

Workhorse molecules called heat-shock proteins contribute to refolding proteins that were once misfolded and clumped, causing such disorders as Parkinson's disease, amyotrophic lateral sclerosis, and Alzheimer's ...

New computation method helps identify functional DNA

Jan 21, 2015

Striving to unravel and comprehend DNA's biological significance, Cornell scientists have created a new computational method that can identify positions in the human genome that play a role in the proper ...

Light technologies illuminate global challenges

Jan 13, 2015

During these dark winter months, spare a thought for artificial lights. From strings of lights adding holiday cheer to artificial sunlamps alleviating seasonal affective disorder, they brighten our days. ...

The epigenetic switchboard

Jan 12, 2015

Epigenetic signals help determine which genes are activated at which time in a given cell. A novel analytical method enables systematic characterization of the relevant epigenetic tags, and reveals that the ...

Recommended for you

Among gut microbes, strains, not just species, matter

5 hours ago

A large community of microorganisms calls the human digestive tract home. This dynamic conglomerate of microscopic life forms - the gut microbiome - is vital to how people metabolize various nutrients in ...

Scientists develop compound to fight MRSA

5 hours ago

Microbiologists and chemists at the University of South Florida have developed and patented a synthetic compound that has shown antibiotic action against methicillin resistant Staphylococcus aureus, also k ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.