Chimp and human communication trace to same brain region

Feb 28, 2008

An area of the brain involved in the planning and production of spoken and signed language in humans plays a similar role in chimpanzee communication, researchers report online on February 28th in the journal Current Biology.

“Chimpanzee communicative behavior shares many characteristics with human language,” said Jared Taglialatela of the Yerkes National Primate Research Center. “The results from this study suggest that these similarities extend to the way in which our brains produce and process communicative signals.”

The results also suggest that the “neurobiological foundations” of human language may have been present in the common ancestor of modern humans and chimpanzees, he said.

Scientists had identified Broca’s area, located in part of the human brain known as the inferior frontal gyrus (IFG), as one of several critical regions that light up with activity when people plan to say something and when they actually talk or sign. Anatomically, Broca’s area is most often larger on the left side of the brain, and imaging studies in humans had shown left-leaning patterns of brain activation during language-related tasks, the researchers said.

“We didn’t know if or to what extent other primates, and particularly humans’ closest ancestor, the chimpanzees, possess a comparable region involved in the production of their own communicative signals,” Taglialatela said.

In the new study, the researchers non-invasively scanned the brains of three chimpanzees as they gestured and called to a person in request for food that was out of their reach. Those chimps showed activation in the brain region corresponding to Broca’s area and in other areas involved in complex motor planning and action in humans, the researchers found.

The findings might be interpreted in one of two ways, Taglialatela said.

“One interpretation of our results is that chimpanzees have, in essence, a ‘language-ready brain,’ ” he said. “By this, we are suggesting that apes are born with and use the brain areas identified here when producing signals that are part of their communicative repertoire.

“Alternatively, one might argue that, because our apes were captive-born and producing communicative signals not seen often in the wild, the specific learning and use of these signals ‘induced’ the pattern of brain activation we saw. This would suggest that there is tremendous plasticity in the chimpanzee brain, as there is in the human brain, and that the development of certain kinds of communicative signals might directly influence the structure and function of the brain.”

Source: Cell Press

Explore further: Italian olive tree disease stumps EU

add to favorites email to friend print save as pdf

Related Stories

Facebook artificial intelligence team serves up 20 tasks

Mar 05, 2015

In August last year, Daniela Hernandez wrote in Wired about Yann LeCun, director of AI Research at Facebook. His interests include machine learning, audio, video, image, and text understanding, optimization, computer architecture and software for AI. ...

Atlas of thoughts

Mar 19, 2015

Using a computer game, a research group at Aarhus University has found a way to gain deeper insight into the human thought process. The results have amazed the research director, who has discovered a kind ...

Recommended for you

Dairy farms asked to consider breeding no-horn cows

11 hours ago

Food manufacturers and restaurants are taking the dairy industry by the horns on an animal welfare issue that's long bothered activists but is little known to consumers: the painful removal of budding horn ...

Italian olive tree disease stumps EU

Mar 27, 2015

EU member states are divided on how to stop the spread of a disease affecting olive trees in Italy that could result in around a million being cut down, officials said Friday.

China starts relocating endangered porpoises: Xinhua

Mar 27, 2015

Chinese authorities on Friday began relocating the country's rare finless porpoise population in a bid to revive a species threatened by pollution, overfishing and heavy traffic in their Yangtze River habitat, ...

A long-standing mystery in membrane traffic solved

Mar 27, 2015

In 2013, James E. Rothman, Randy W. Schekman, and Thomas C. Südhof won the Nobel Prize in Physiology or Medicine for their discoveries of molecular machineries for vesicle trafficking, a major transport ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.