Atypical protein kinase C stabilizes SRC-3 levels in breast cancer cells

Feb 28, 2008

A new study provides valuable insight into a previously undescribed mechanism that regulates a prominent cancer-associated protein. The research, published by Cell Press in the February 29th issue of Molecular Cell, will enhance understanding of the fundamental processes that contribute to breast cancer.

It is well established that steroid receptor coactivator-3 (SRC-3/AIB1) plays key roles in cell growth, reproduction, metabolism and cytokine signaling, is overexpressed in many cancers and is a major player in tumorigenesis and cancer progression. It is also clear that protein kinases are often overactive in cancers and that distinct patterns of phosphorylation, induced by different signals and different kinases, can play a major role in regulating cancer-associated proteins, including SRC-3.

“Recently, it was shown that phosphorylation of SRC-3 by specific kinases is associated with increased degradation of SRC-3. However, kinases that stabilize SRC-3 in cancer cells have not yet been reported,” explains lead author Dr. Bert O’Malley from the Baylor College of Medicine. Dr. O’Malley and colleagues examined the interaction between atypical protein kinase C (aPKC), which is overexpressed in many cancers, and SRC-3.

The researchers found that aPKC stabilized cellular SRC-3 protein levels by inducing phosphorylation of a particular region of SRC-3. Specifically, phosphorylation of C-terminal residues induced a conformational change that made SRC-3 more resistant to degradation by the core proteasome. This effect of aPKC required estrogen and estrogen receptor and was not supported by other steroid receptors, suggesting that aPKC-mediated SRC-3 stabilization is a receptor-selective event. These results reveal a mechanism that links aPKC with estrogen-dependent growth and tumorigenesis and provide yet another layer of control for regulating levels of the SRC-3 oncogenic protein.

“Our data describe a new regulatory mechanism for SRC-3 protein turnover which may play an important role in regulating SRC-3 levels in normal and oncogenic cell growth,” offers Dr. O’Malley. “We propose that when aPKC is overexpressed in cancer cells, the consequence is increased SRC-3 function and powerful enhancement of estrogen-receptor target gene transcription and promotion of estrogen-dependent cell growth in cancer cells such as breast.”

Source: Cell Press

Explore further: Japan lab cannot repeat ground-breaking cell finding: reports

add to favorites email to friend print save as pdf

Related Stories

Study could improve treatments for prostate cancer

Apr 01, 2010

Van Andel Research Institute (VARI) scientists have determined how two proteins required for the initiation and development of prostate cancer interact at the molecular level, which could lead to improved treatments for ...

Recommended for you

Protections blocked, but sage grouse work goes on

14 hours ago

(AP)—U.S. wildlife officials will decide next year whether a wide-ranging Western bird species needs protections even though Congress has blocked such protections from taking effect, Interior Secretary ...

Contrasting views of kin selection assessed

16 hours ago

In an article to be published in the January issue of BioScience, two philosophers tackle one of the most divisive arguments in modern biology: the value of the theory of "kin selection."

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.