The structure of resistance

Feb 22, 2008

A team of scientists from the University Paris Descartes has solved the structure of two proteins that allow bacteria to gain resistance to multiple types of antibiotics, according to a report in EMBO reports this month. This work provides new clues as to how bacteria adapt to resist antibiotics and how to design new drugs that counteract this defense mechanism.

Frédéric Dardel and colleagues crystallized both the narrow and broad-spectrum resistance forms of the antibiotic-modifying acetyltransferase enzyme. Their report reveals that the enzyme has a flexible active site that can evolve to accommodate new antibiotics, allowing the bacteria to break them down and render them useless. This explains why this type of enzyme is now carried by many bacteria struggling for survival in the antibiotic age.

More importantly, the research provides new insight for the design of new antibiotics that could evade this form of resistance, and new inhibitors that would extend the effectiveness of current antibiotics, both of which could help in the fight against the deadly infections becoming more frequent in hospitals.

Article: www.nature.com/embor/journal/v… /abs/embor20089.html

Source: European Molecular Biology Organization

Explore further: Dwindling wind may tip predator-prey balance

add to favorites email to friend print save as pdf

Related Stories

New insights in survival strategies of bacteria

Sep 14, 2014

Bacteria are particularly ingenious when it comes to survival strategies. They often create a biofilm to protect themselves from a hostile environment, for example during treatment with antibiotics. A biofilm is a bacterial ...

Recommended for you

Dwindling wind may tip predator-prey balance

Sep 19, 2014

Bent and tossed by the wind, a field of soybean plants presents a challenge for an Asian lady beetle on the hunt for aphids. But what if the air—and the soybeans—were still?

Environmental pollutants make worms susceptible to cold

Sep 19, 2014

Some pollutants are more harmful in a cold climate than in a hot, because they affect the temperature sensitivity of certain organisms. Now researchers from Danish universities have demonstrated how this ...

Research helps steer mites from bees

Sep 19, 2014

A Simon Fraser University chemistry professor has found a way to sway mites from their damaging effects on bees that care and feed the all-important queen bee.

User comments : 0