'Two-Faced' Particles Act Like Tiny Submarines

Feb 21, 2008
'Two-Faced' Particles Act Like Tiny Submarines

For the first time, researchers at North Carolina State University have demonstrated that microscopic "two-faced" spheres whose halves are physically or chemically different – so-called Janus particles – will move like stealthy submarines when an alternating electrical field is applied to liquid surrounding the particles.

A paper describing the research, published in the Feb. 8, 2008, edition of Physical Review Letters, advances knowledge about how potential "smart" materials – think of tiny engines or sensors – can move around and respond to changes in their environment. Janus particles could be used as microscopic mixers, molecular "shuttles," self-propelling microsensors or means of targeted drug delivery.

The researchers – Dr. Orlin Velev, associate professor of chemical and biomolecular engineering at NC State and lead author of the paper; Sumit Gangwal, an NC State graduate student; Dr. Olivier Cayre, a post-doctoral researcher in Velev's lab; and Dr. Martin Bazant from Massachusetts Institute of Technology – created tiny two-faced gold and plastic particles and applied low frequency alternating current to the water containing the particles. The electric field was of voltage and frequency similar to the ones you'd get if you plugged a device into a socket in your home or office.

Velev says the micrometer-sized particles convert the electrical field into liquid motion around them and then unexpectedly propel themselves perpendicular to the direction of the powered electrodes – not in the direction of the electrical field, as would be expected. The particles always travel in the same orientation: with the plastic "face" as the front of the mini-submarine and the metallic "face" in the rear, Velev added.

The phenomenon – called "induced-charge electrophoresis," which had been predicted in a theoretical model by the MIT collaborator – had not been demonstrated previously.

The term "Janus particle" comes from the name of a Roman god with two faces. Velev says that these materials have the potential to perform a variety of applications.

"You can imagine other types of Janus particles comprising a 'smart gel' that responds to a change in its environment and then releases drugs, for example," Velev says. Fabricating these responsive materials on the microscale and nanoscale is an exciting and rapidly developing area of science, he adds.

"We are able to create tiny Janus particles of the same size and shape and are beginning to learn how to give them functionality," Velev said. "The next step is to create more complex particles that are able to perform more specialized functions in addition to propelling themselves around."

Source: North Carolina State University

Explore further: Neutrino trident production may offer powerful probe of new physics

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

And so they beat on, flagella against the cantilever

14 hours ago

A team of researchers at Boston University and Stanford University School of Medicine has developed a new model to study the motion patterns of bacteria in real time and to determine how these motions relate ...

Tandem microwave destroys hazmat, disinfects

18 hours ago

Dangerous materials can be destroyed, bacteria spores can be disinfected, and information can be collected that reveals the country of origin of radiological isotopes - all of this due to a commercial microwave ...

Cornell theorists continue the search for supersymmetry

20 hours ago

(Phys.org) —It was a breakthrough with profound implications for the world as we know it: the Higgs boson, the elementary particle that gives all other particles their mass, discovered at the Large Hadron ...

How did evolution optimize circadian clocks?

Sep 12, 2014

(Phys.org) —From cyanobacteria to humans, many terrestrial species have acquired circadian rhythms that adapt to sunlight in order to increase survival rates. Studies have shown that the circadian clocks ...

User comments : 5

Adjust slider to filter visible comments by rank

Display comments: newest first

earls
not rated yet Feb 21, 2008
"applied low frequency alternating current to the water containing the particles. The electric field was of voltage and frequency similar to the ones you'd get if you plugged a device into a socket in your home or office."

So I can try this at home? ;)
NeilFarbstein
1 / 5 (2) Feb 21, 2008
I say its' obvious
NeilFarbstein
1 / 5 (2) Feb 21, 2008
It beats making volcanoes in your microwave oven or lighting off firecrackers
Lischyn
1 / 5 (2) Feb 22, 2008
Where's the video?
AJW
not rated yet Feb 23, 2008
What is the theory? More electrons on one
face than the other face with resulting
biased Brownian Movement?