Zoologists challenge longstanding theory that 'eyespots' mimic the eyes of predators' enemies

Feb 21, 2008

Circular markings on creatures such as butterflies are effective against predators because they are conspicuous features, not because they mimic the eyes of the predators’ own enemies, according to research published today in the journal, Behavioral Ecology. Zoologists based at the University of Cambridge challenge the 150-year-old theory about why these markings are effective against predators.

Many animals possess protective markings to avoid predation, including patterns to reduce the risk of detection (camouflage), to indicate that the animal is toxic or inedible (‘warning colours’), or to mimic another animal or object (‘mimicry’ and ‘masquerade’).

In addition, many creatures such as butterflies, moths, and fish possess two or more pairs of circular markings, often referred to as ‘eyespots’. Many eyespots are effective in startling or intimidating predators, and can help to prevent or stop an attack. For the past 150 years it has been assumed that this is because they mimic the eyes of the predator’s own enemies.

However, recent work by University of Cambridge zoologists, Martin Stevens, Chloe Hardman, and Claire Stubbins, indicates that this widely-held hypothesis has no experimental support.

Stevens, Hardman, and Stubbins tested the response of wild avian predators to artificial moths, created from waterproof paper. Specific patterns, such as intimidating eyespots of different shapes, sizes and number, and with different levels of eye mimicry, were printed on to the paper using a high quality printer. These ‘moths’ were then pinned to trees of various species at a height of one to three metres in the mixed deciduous Madingley Woods in Cambridgeshire, UK. Attached to each of the artificial moths was an edible mealworm as a temptation for woodland birds such as the blue tits, great tits, blackbirds, and house sparrows.

The zoologists discovered that artificial moths with circular markings survived no better than those with other conspicuous features and that the features of eyespots which most encouraged predators to avoid them are large size, a high number of spots, and conspicuousness in general.

As Dr Stevens explains, ‘the birds were equally likely to avoid artificial moths with markings such as bars and squares as they were to avoid those with two eye-like markings. This leads us to conclude that eyespots work because they are highly conspicuous features, not because they mimic the eyes of the predators’ own enemies. This suggests that circular markings on many real animals need not necessarily, as most accounts claim, mimic the eyes of other animals.’

Source: Oxford University

Explore further: Diabetes drug found in freshwater is a potential cause of intersex fish

Related Stories

Recommended for you

High-pitched sounds cause seizures in old cats

1 hour ago

When the charity International Cat Care asked veterinary neurologists at Davies Veterinary Specialists, UK, for help with several enquiries it had received regarding cats having seizures, seemingly in response ...

Rare dune plants thrive on disturbance

2 hours ago

Beginning in the 1880s, coastal dunes in the United States were planted with European beachgrass (Ammophila arenaria) in an attempt to hold the sand in place and prevent it from migrating. The grass did th ...

How an RNA gene silences a whole chromosome

4 hours ago

Researchers at Caltech have discovered how an abundant class of RNA genes, called long non-coding RNAs (lncRNAs, pronounced link RNAs) can regulate key genes. By studying an important lncRNA, called Xist, ...

Single cells seen in unprecedented detail

6 hours ago

Researchers have developed a large-scale sequencing technique called Genome and Transcriptome Sequencing (G&T-seq) that reveals, simultaneously, the unique genome sequence of a single cell and the activity ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

MikeyK
5 / 5 (1) Feb 21, 2008
One major flaw with this experiment, it does not take into account the startling effect a flash of the eye spots have. Virtually all insects that use eyespots have them concealed at rest and 'flash' them when threatened, the rapidity not giving the potential predator time to analyse the image to indicate whether it saw an eyespot as a predators eye or not. Like all biological processes there is not one part to the puzzle but a mixture of components, you can't take one structure in isolation. Maybe a new experiment with robotic wings that flash when a predator is nearby will be a more valuable experiment.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.