Tumor-killing virus selectively targets diseased brain cells

Feb 19, 2008

New findings show that a specialized virus with the ability to reproduce its tumor-killing genes can selectively target tumors in the brains of mice and eliminate them. Healthy brain tissue remained virtually untouched, according to a Feb. 20 report in The Journal of Neuroscience. With more research, the technique could one day offer a novel way of treating brain cancer in humans.

“Most importantly, this study finds that the virus can penetrate into the brain, where it even reaches cells that have migrated away from the main tumor,” says Harald Sontheimer, PhD, of the University of Alabama at Birmingham, who was not affiliated with the study. “Assuming that the virus behaves similarly in humans, in the future, it may provide a novel and highly efficacious way to treat resistant tumors.”

The study is the culmination of six years of basic research into the fundamental processes of viruses and the cells they target, conducted by senior author Anthony van den Pol, PhD, and his team at Yale University School of Medicine. They set out to test the vesicular stomatis virus, which was selected for its ability to attack brain tumors and leave healthy tissue largely uninfected.

Tumor cells from brain cancers commonly found both in people and in mice were implanted into immune-compromised mice, which then received an injection of the virus in the tail. By viewing fluorescent proteins embedded in both tumor and virus cells in the brains of living mice, van den Pol’s team watched as the virus infected multiple sites in the brain, spreading across an entire tumor within three days, killing tumor cells in its wake. The virus did not target normal mouse tissue or non-cancerous human brain cells transplanted into the mouse brain, the team found. They speculated that, unlike those in healthy brain tissue, blood vessels within brain tumors may leak, allowing the virus to cross the usually impenetrable protective barrier around the brain.

The virus was equally effective in destroying tissue from cancers that start in the breast or lung and spread to the brain—the two cancers most likely to metastasize to the brain—and targeted tumors at different sites throughout the body. Each year in the United States, more than 20,000 new cases of brain or nervous system cancers are diagnosed, according to the National Cancer Institute.

Future research will focus on understanding potential safety risks, such as whether the virus could eventually infect normal brain cells, as well exploring potential changes to the virus that could mitigate such risk. “We have some ideas for making the virus safer in the human brain,” says van den Pol. “This is important to prevent the virus from potentially infecting normal brain cells after it has targeted the brain tumor.”

Source: Society for Neuroscience

Explore further: Mice study shows efficacy of new gene therapy approach for toxin exposures

add to favorites email to friend print save as pdf

Related Stories

China's Alibaba plans IPO for week of September 8

16 hours ago

Chinese e-commerce giant Alibaba plans to hold its initial public offering on the US stock market the week of September 8, the Wall Street Journal reported Saturday, citing a person familiar with the matter.

Tablet sales slow as PCs find footing

17 hours ago

Tablets won't eclipse personal computers as fast as once thought, according to studies by market tracker International Data Corporation (IDC).

Startups offer banking for smartphone users

17 hours ago

The latest banks are small enough to fit in the palm of your hand. Startups, such as Moven and Simple, offer banking that's designed specifically for smartphones, enabling users to track their spending on the go. Some things ...

Recommended for you

How Alzheimer's peptides shut down cellular powerhouses

Aug 29, 2014

The failing in the work of nerve cells: An international team of researchers led by Prof. Dr. Chris Meisinger from the Institute of Biochemistry and Molecular Biology of the University of Freiburg has discovered ...

User comments : 0