Clicking synthetic and biological molecules together

Feb 19, 2008

Dutch researcher Joost Opsteen has developed a method to click polymers together in a controlled manner. Using this method, he can even attach proteins to nanoballs. For instance, this approach could be used to transport medicines in the body.

Over the past few years there has been an increasing interest in combining biopolymers, such as proteins and DNA, and synthetic polymers to create new biohybrid macromolecules. These hybrid polymers can be used in medicines, bioengineering and nanotechnology.

One of the difficulties in combining synthetic and biological polymers is that biopolymers contain a lot of functional groups, which must also retain their functionality after coupling has taken place. Consequently, chemical reactions need to be developed that are not only efficient but also highly selective about where the polymers join.

Joost Opsteen used a known coupling reaction: a reaction between azides and alkynes, with copper as the catalyst. This reaction is also referred to as “click” chemistry. Based on this reaction, he developed a method to link polymers together in a controlled manner. He attached the required azide and alkyne groups onto the ends of polymer chains. Subsequently, using copper as the catalyst he joined the synthetic polymers to each other and to the proteins.

Some polymers form nanoballs in water, a property that may be used to transport medicines in the body. Using click chemistry, proteins can be attached to these nanoballs. With this approach the nanoballs could be transported to the correct location in the body.

Source: NWO

Explore further: Ultra-small block 'M' illustrates big ideas in drug delivery

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Semiconductor miniaturisation with 2D nanolattices

10 hours ago

A European research project has made an important step towards the further miniaturisation of nanoelectronics, using a highly-promising new material called silicene. Its goal: to make devices of the future ...

Ultra-small block 'M' illustrates big ideas in drug delivery

12 hours ago

By making what might be the world's smallest three-dimensional unofficial Block "M," University of Michigan researchers have demonstrated a nanoparticle manufacturing process capable of producing multilayered, precise shapes.

Magnetic nanoparticles enhance performance of solar cells

Feb 25, 2015

Magnetic nanoparticles can increase the performance of solar cells made from polymers - provided the mix is right. This is the result of an X-ray study at DESY's synchrotron radiation source PETRA III. Adding ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.