Building brains: Mammalian-like neurogenesis in fruit flies

Feb 19, 2008

A new way of generating brain cells has been uncovered in Drosophila. The findings, published this week in the online open access journal Neural Development, reveal that this novel mode of neurogenesis is very similar to that seen in mammalian brains, suggesting that key aspects of neural development could be shared by insects and mammals.

In the widely accepted model of neurogenesis in Drosophila, neuroblasts divide asymmetrically both to self renew and to produce a smaller progenitor cell. This cell then divides into two daughter cells, which receive cell fate determinants, causing them to exit the cell cycle and differentiate.

In mammals, neural stem cells may also divide asymmetrically but can then amplify the number of cells they produce through intermediate progenitors, which divide symmetrically. A research team from the University of Basel, Switzerland set out to study whether specific Drosophila neural stem cells, neuroblasts, might increase the number of cells generated in the larval brain via a similar mechanism.

The team used cell lineage tracing and genetic marker analysis to show that surprisingly large neuroblast lineages are present in the dorsomedial larval brain – a result, they say, of amplified neuroblast proliferation mediated through intermediate progenitors.

In the novel mechanism postulated by the researchers, there are intermediate progenitors present that divide symmetrically in terms of morphology, but asymmetrically in molecular terms. This latter feature means that cell fate determinants are segregated into only one daughter cell, leaving the other free to divide several more times, thus amplifying the number of cells generated.

The authors write: “The surprising similarities in the patterns of neural stem and intermediate progenitor cell division in Drosophila and mammals, suggest that amplification of brain neurogenesis in both groups of animals may rely on evolutionarily conserved cellular and molecular mechanisms.”

Source: BioMed Central

Explore further: Team discovers key to preventing blindness and stroke devastation

add to favorites email to friend print save as pdf

Related Stories

Growing functioning brain tissue in 3D

Jan 29, 2015

Researchers at the RIKEN Center for Developmental Biology in Japan have succeeded in inducing human embryonic stem cells to self-organize into a three-dimensional structure similar to the cerebellum, providing ...

Do viruses make us smarter?

Jan 12, 2015

A new study from Lund University in Sweden indicates that inherited viruses that are millions of years old play an important role in building up the complex networks that characterise the human brain.

Recommended for you

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.