Improved polymers for lithium ion batteries pave the way for next generation of electric and hybrid cars

Feb 18, 2008

The next generation of electric and hybrid cars may be a step closer thanks to new and improved polymer membranes that allow the development of bigger, safer, and more powerful lithium ion batteries, according to an article scheduled for the Feb. 18 issue of Chemical & Engineering News, ACS’ weekly newsmagazine.

In the article, C&EN Senior Editor Alexander H. Tullo notes that polymer membranes are already an essential component of lithium ion batteries that power iPods, laptop computers, and other portable electronic devices. These porous, hair-thin separators control the flow of electrons through the battery. Their failure can result in overheating and even fires. Such problems have recently prompted the widespread recall of millions of lithium ion batteries.

Tullo points out that lithium ion batteries will need to be bigger, safer, and more powerful if they are to be used effectively in motor vehicles. For that purpose, improved polymer separators are needed. Recently, battery manufacturers have stepped up to this challenge by developing new polymer separators with greater porosity for improved power flow and stronger insulation materials for improved safety.

At least one manufacturer is already using a new type of polymer separator in a new line of electric vehicles, while other advanced polymers are making their way through the development pipeline, according to the article. “The reality of driving to work under electric power may only be a hair away,” Tullo says.

Source: ACS

Explore further: Scientists trial system to improve safety at sea

add to favorites email to friend print save as pdf

Related Stories

Team advances fuel cell car technology

Jan 29, 2015

Dr. Yossef Elabd, professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University, has developed two fuel cell vehicle platforms for both present day enhancements and future innovation.

Research aims to improve lithium-based batteries

Jan 22, 2015

Research probing the complex science behind the formation of "dendrites" that cause lithium-ion batteries to fail could bring safer, longer-lasting batteries capable of being charged within minutes instead of hours.

Laser-induced graphene 'super' for electronics

Jan 14, 2015

Rice University scientists advanced their recent development of laser-induced graphene (LIG) by producing and testing stacked, three-dimensional supercapacitors, energy-storage devices that are important ...

Toward nano-powered cars

Jan 14, 2015

How can electric cars increase their driving range before they need to stop and recharge? Traditional batteries cannot keep up with the high storage demand but the complete redesign of lithium ion batteries open up new possibilities

Recommended for you

Scientists trial system to improve safety at sea

Jan 30, 2015

A space scientist at the University of Leicester, in collaboration with the New Zealand Defence Technology Agency and DMC International Imaging, has been trialling a concept for using satellite imagery to ...

Skin device uses motion to power electronics

Jan 29, 2015

Can a skin patch power wearables? Skin-based generators have become an area of focus among researchers working on how to scavenge muscle motion whereby skin becomes a charge-collector. A detailed report in ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.