The key to quieter Atlantic hurricane seasons may be blowing in the wind

Feb 16, 2008

Every year, storms over West Africa disturb millions of tons of dust and strong winds carry those particles into the skies over the Atlantic. According to a recent study led by University of Wisconsin-Madison atmospheric scientists, this dust from Africa directly affects ocean temperature, a key ingredient in Atlantic hurricane development.

"At least one third of the recent increase in Atlantic Ocean temperatures is due to a decrease in dust storms," says lead author Amato Evan, a researcher at UW-Madison's Cooperative Institute for Meteorological Satellite Studies (CIMSS).

In a paper published online today in Geochemistry, Geophysics, Geosystems, the team of scientists describes how dust in the atmosphere cools the ocean by decreasing the amount of energy that reaches the water. The study also demonstrated that the large amount of dust blowing off of Africa in the 1980s and '90s likely cooled the Atlantic enough to prevent conditions that could have resulted in more devastating hurricane seasons similar to 2004 and 2005.

As dust from Africa accumulates in the skies over the Atlantic, the atmosphere above the ocean begins to resemble the conditions over Africa. Millions of tons of dust create a drier environment and also reduce the amount of sunlight that reaches the ocean. Using a 25-year data record created by co-author Andrew Heidinger, a researcher with the National Oceanic and Atmospheric Administration (NOAA), Evan assessed how much the dust cooled the temperature of the ocean.

"It's not just one dust storm," Evan says. "It's the cumulative effect of several months of dust storms."

The 2007 Atlantic hurricane season, for example, was much quieter than predicted and the Atlantic was cooler than in previous years. Evan suggests that the relative lack of hurricane activity and cool ocean temperatures could be partially due to a particularly dusty spring and early summer. 2007 was the dustiest year since 1999.

By putting satellite observations and other atmospheric information into a computer simulation, Evan assessed how much energy reached the ocean with the dust in the atmosphere and then again after removing the dust. Evan found that dust cools the Atlantic by an average of one degree Celsius, about two degrees Fahrenheit, each year. In years with a lot of dust activity, such as the 1980s, the dust had a larger cooling effect.

In a study published in fall 2006 in "Geophysical Research Letters," Evan demonstrated that the intensity of hurricane seasons in the Atlantic increased when the amount of dust blowing off of Africa decreased and vice versa. The study published today is an effort to explain why this relationship exists and what the past few decades would have looked like without the effects of dust. Evan says these results confirm a direct connection between the intensity of dust storms in Africa and that of hurricanes in the Atlantic.

Because of the direct relationship, the amount of dust in the atmosphere could contribute to hurricane season forecasts. "Dust prediction is another tool to diagnose hurricane activity," Evan says. Evan has done some preliminary work to develop an effective way to use satellite observations to predict dust activity up to nine months in advance.

Dust storms in Africa have a significant impact on the temperature of the Atlantic Ocean, which, in turn, plays a large role in hurricane activity. Although climate change has taken the spotlight in media conversations about hurricanes, many factors influence these complicated storms. Of the effects of global warming, Evan says: "It's real, but that's not all there is."

Source: University of Wisconsin-Madison

Explore further: Antarctic ice sheet is result of CO2 decrease, not continental breakup

add to favorites email to friend print save as pdf

Related Stories

Microsoft unveils Xbox in China as it faces probe

10 hours ago

Microsoft on Wednesday unveiled its Xbox game console in China, the first to enter the market after an official ban 14 years ago, even as it faces a Chinese government probe over business practices.

Classic Lewis Carroll character inspires new ecological model

10 hours ago

Inspired by the Red Queen in Lewis Carroll's Through the Looking Glass, collaborators from the University of Illinois and National University of Singapore improved a 35-year-old ecology model to better understand how species ...

Recommended for you

NASA sees zombie Tropical Depression Genevieve reborn

11 hours ago

Infrared imagery from NASA's Aqua satellite helped confirm that the remnant low pressure area of former Tropical Storm Genevieve has become a Zombie storm, and has been reborn as a tropical depression on ...

Wave energy impact on harbour operations investigated

15 hours ago

Infragravity period oscillations—waves that occur between 25 and 300 seconds with a wavelength between 100m and 10km—can have an impact on berthing operations, depending on a harbour's geometry.

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

pauldentler
3 / 5 (2) Feb 16, 2008
How 'bout that, "global cooling". Ir-refutable proof that "particulates" in the upper levels of the atmospere will counteract "global warming". We need more coal fired power plants to come on-line throughout the world (especially in China)to pump out even more particulate emissions and maybe in time they can solve their "desertification problems" and the U.S. can eliminate the deserts of the southwest.
EarthScientist
1 / 5 (1) Feb 18, 2008
You go Paul,but actually temperature differences of just 1 degree C is surely not enough to get definitive results.Wishful thinking at best since grid energy and planet position to get more grid energy on the main nodes,which is where hurricanes are spun up,every time,and then they track to THE ground line. A simple process at the node would ameliorate all hurricanes. This grid scientist says so.