From stem cells to organs: The bioengineering challenge

Feb 16, 2008

For more than a decade, Peter Zandstra has been working at the University of Toronto to rev up the production of stem cells and their descendants. The raw materials are adult blood stem cells and embryonic stem cells. The end products are blood and heart cells – lots of them. Enough mouse heart cells that they form beating tissue.

To do this, he has been applying engineering principles to stem cell research – work that has just earned him recognition by the American Association for the Advancement of Science (AAAS). The society will induct him as a Fellow during its Annual Conference, being held in Boston from February 14 to 18.

Starting with computer models of stem cell growth and differentiation (the process by which a stem cell matures into its final form), Zandstra has moved on to develop more sophisticated culture methods that fine-tune the microenvironments to guide the generation of the different cells types that make up the mature cells in our tissues: heart cells for the heart or blood cells for blood.

"If you describe something mathematically, you have a much better understanding of it than if you just observe it," he says. "And it's also a powerful way to test many different hypotheses in silico before going into the lab and doing the much more difficult experiments in vitro."

Dr. Zandstra, the Canada Research Chair in Stem Cell Bioengineering, also held a prestigious NSERC Steacie Fellowship. The Steacie prize - which goes to six select Canadian professors annually – allowed Zandstra to extend his work from mouse to man.

“There's only so much we can do with mouse cells,” notes Dr. Zandstra. “Now if we can also figure out how to get human embryonic stem cells to differentiate on command to generate functional adult-like cells, you can begin to think about the kinds of medical conditions you could treat with them.”

Source: Natural Sciences and Engineering Research Council

Explore further: 221 new species described by the California Academy of Sciences in 2014

add to favorites email to friend print save as pdf

Related Stories

Predicting the fate of stem cells

Oct 22, 2013

University of Toronto researchers have developed a method that can rapidly screen human stem cells and better control what they will turn into. The technology could have potential use in regenerative medicine and drug development. ...

Researchers learn how blood cells 'talk'

Aug 05, 2009

(PhysOrg.com) -- Researchers at the University of Toronto have developed a new model that explains how cells communicate and specifically reveals how blood cells "talk" to each other. The result could help transform treatments ...

Recommended for you

Ninety-eight new beetle species discovered in Indonesia

1 hour ago

Ninety-eight new species of the beetle genus Trigonopterus have been described from Java, Bali and other Indonesian islands. Museum scientists from Germany and their local counterparts used an innovative approa ...

Bacteria are wishing you a Merry Xmas

2 hours ago

A bacterium has been used to wish people a Merry Xmas. Grown by Dr Munehiro Asally, an Assistant Professor at the University of Warwick, the letters used to spell MERRY XMAS are made of Bacillus subtilis, ...

Pragmatic approach to saving what can be saved

2 hours ago

How can biodiversity be preserved in a world in which traditional ecosystems are increasingly being displaced by "man-made nature"? Biologists at the TU Darmstadt and ETH Zurich have developed a new concept ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.