Small graphene wires may be poor conductors

Feb 15, 2008

Ohio University physicists researching electron properties in graphene ribbons have found that narrow wires made of this material may not be good conductors.

Graphene is considered to be the natural successor for silicon — the semiconductor material comprising the majority of all electronics today — with potential applications in the development of transistors and other circuitry devices that can revolutionize the future of electronics, said Nancy Sandler, an assistant professor of physics and astronomy at Ohio University.

Sandler, in collaboration with Ohio University postdoctoral fellow Mahdi Zarea, began researching electron phenomena in graphene — a single planar sheet of carbon-bonded atoms that forms graphite in its layered form — a year ago. The researchers were intrigued by the properties of the material when confined to small dimensions and focused on ribbon geometries as a first attempt to understand graphene wires.

“Under certain conditions carbon is a better conductor than silicon,” said Sandler. “With graphene, only a minimum push — with a very small energy cost — is required to stimulate electrons to move. They can move faster and without deviations from their path even at room temperatures.”

However, this behavior changes dramatically if the material is made into very thin wires, as the researchers found out in their latest work, which recently was published in the journal Physical Review Letters and in the Virtual Journal of Nanoscale Science & Technology.

The published work contains the first proposal of an explicit mechanism proved to dramatically alter the expected conduction properties of graphene ribbons.

“There are ‘minimum widths’ below which graphene ribbons are simply not good conductors at room temperatures. If we want to have smaller circuits, we need somehow to deal with the laws of repulsion that govern nature at such small scales,” Sandler said.

The effect is basically caused by the natural repulsion that alike charges feel when placed closer, when they are ‘confined,’ said Zarea. Surprisingly, and in contrast to predictions for graphene planes, intrinsic spin-orbit interactions originating from electrons moving around one another in which their spins can alter the motion — an effect due to relativistic corrections — don’t have the same consequences. It’s not the way electrons move, but their closeness that is fundamental in establishing the material's metallic behavior and viability as a conductor material, according to the researchers.

Sandler and Zarea are members of Ohio University’s Nanoscale and Quantum Phenomena Institute.

Source: Ohio University

Explore further: In-situ nanoindentation study of phase transformation in magnetic shape memory alloys

add to favorites email to friend print save as pdf

Related Stories

Nanotube growth theory experimentally confirmed

Jan 30, 2012

( -- The Air Force Research Laboratory in Dayton, Ohio, has experimentally confirmed a theory by Rice University Professor Boris Yakobson that foretold a pair of interesting properties about nanotube ...

Engineers discover graphene's weakness

Dec 09, 2010

( -- If you owned a mechanical device made out of the strongest material known to mankind, wouldn’t you want to know under what circumstances it might fail?

Recommended for you

'Exotic' material is like a switch when super thin

Apr 18, 2014

( —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (1) Feb 15, 2008
why are they moving around one another? That sound like superconductive behavior, coooper pairs.
5 / 5 (1) Feb 15, 2008
they're good conductors minus the configuration they're forcing them to assume
not rated yet Feb 18, 2008
"Very thin wires".... just HOW thin?

Does this refer to the carbon nanotubes? Funny, I would have thought that having the cylindrical surface area of a nanotube would allow for sufficient charge separation.

Perhaps the hollow nanotube could be 'doped' with another semiconductor to overcome the problem.

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...