A 'Golden Channel' for New Physics

Feb 15, 2008 by Laura Mgrdichian feature

A group of physicists has dubbed a particular particle decay, the decay of the Bs meson into a neutral kaon and neutral antikaon, as a “golden channel” for new physics, suggesting that probing and studying the decay could lead to brand-new insight into the physics laws that govern the tiniest bits of matter. The scientists discuss their ideas, and how this decay could be studied in the future, in the January 25, 2008, edition of Physical Review Letters.

The group states that the BS decay may open a rare window to a physics concept called CP symmetry, where C stands for charge (i.e. negative, positive, or neutral) and P for parity. Parity is a mathematical characteristic of a particle that, in effect, gives the particle a “handedness.” For example, when I look in the mirror and raise my right hand, my reflection raises her left. Although we are otherwise essentially identical, we have different handedness. Thus, parity is one way to distinguish between very, very similar particles.

In the context of the “big picture,” talking about CP symmetry really means talking about the symmetry of matter and antimatter in the universe, or, rather, the lack thereof. That is, after the Big Bang, equal amounts of matter and antimatter should have been produced. But scientists' observations of certain galaxies show that they appear to contain much more matter than antimatter. Therefore, after the Big Bang, something happened that caused the imbalance.

This big-picture scenario of CP violation can be probed on the smallest scale by studying certain particle decays, those in which a quark changes from one variety, or “flavor,” to another. There are six quark flavors: up, down, charm, strange, top, and bottom (also known as beauty).

“In particular, the bottom-to-strange transition is among the most sensitive probes of new physics,” said the paper's lead author, physicist Marco Ciuchini, to PhysOrg.com. Ciuchini works at Roma Tre University in Rome, Italy, and is also affiliated with Italy's National Institute for Nuclear Physics (INFN).

Ciuchini and his colleagues suggest that this rare BS decay, which involves a bottom-to-strange transition, could be studied at the Large Hadron Collider, the world's largest particle “smasher,” located near Geneva, Switzerland. One experiment at LHC will be LHCb, the Large Hadron Collider beauty project, designed to make precise measurements of CP violation and study rare particle decays.

Another facility where these transitions could be studied is the Super B Factory, a proposed experiment at KEK, the High Energy Accelerator Research Organization in Tsukuba, Japan. KEK houses two high-energy particle accelerators; the Super B project (recently renamed KEKB) may end up as an upgrade to the existing facility rather than new construction. Regardless, according to Ciuchini and his co-authors, such a facility, whether new or an upgrade, “would play a very important role” in probing new physics via bottom-to-strange transitions.

Another “super B” experiment that may be built is a joint Europe-U.S. project called SuperB, which would be a new facility to be built, possibly, in Italy. SuperB is currently being considered by the INFN.

Citation: Phys. Rev. Lett. 100, 031802 (2008)

Copyright 2007 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Heat makes electrons spin in magnetic superconductors

Related Stories

Theory of the strong interaction verified

Mar 26, 2015

The fact that the neutron is slightly more massive than the proton is the reason why atomic nuclei have exactly those properties that make our world and ultimately our existence possible. Eighty years after ...

Recreating the heart of a star on Earth

Mar 24, 2015

By recreating the extreme conditions similar to those found half-way into the Sun in a thin metal foil, Oxford University researchers have captured crucial information about how electrons and ions interact in a unique state ...

Getting a critical edge on plutonium identification

Mar 24, 2015

A collaboration between NIST scientists and colleagues at Los Alamos National Laboratory (LANL) has resulted in a new kind of sensor that can be used to investigate the telltale isotopic composition of plutonium ...

LHCb's new analysis confirms old puzzle

Mar 23, 2015

Today, at the 50th Moriond Electroweak conference (link) (La Thuile, Italy), LHCb physicists presented their latest analysis of the rare B → K*μμ decay. The new results show deviations from Standard Mode ...

Explainer: What are fundamental particles?

Mar 20, 2015

It is often claimed that the Ancient Greeks were the first to identify objects that have no size, yet are able to build up the world around us through their interactions. And as we are able to observe th ...

Recommended for you

Heat makes electrons spin in magnetic superconductors

Apr 24, 2015

Physicists have shown how heat can be exploited for controlling magnetic properties of matter. The finding helps in the development of more efficient mass memories. The result was published yesterday in Physical Review Le ...

ICARUS neutrino experiment to move to Fermilab

Apr 23, 2015

A group of scientists led by Nobel laureate Carlo Rubbia will transport the world's largest liquid-argon neutrino detector across the Atlantic Ocean from CERN to its new home at the US Department of Energy's ...

National security on the move with high energy physics

Apr 23, 2015

Scientists are developing a portable technology that will safely and quickly detect nuclear material hidden within large objects such as shipping cargo containers or sealed waste drums. The researchers, led ...

User comments : 5

Adjust slider to filter visible comments by rank

Display comments: newest first

gopher65
2 / 5 (1) Feb 15, 2008
"(also known as beauty)"

Uh... really? I've never heard that before.
NeilFarbstein
1 / 5 (3) Feb 15, 2008
It is a great honor to be associated with the INFN
Sean_W
2.3 / 5 (4) Feb 15, 2008
""(also known as beauty)"

Uh... really? I've never heard that before."

Yeah. I had heard it used ages ago but it didn't seem to catch on. Beauty and truth may have seemed too hippie-dippy so most people went with bottom and top.
Sean_W
2 / 5 (2) Feb 15, 2008
Yeah. I seem to remember Top and Bottom being called Truth and Beauty but it never really caught on. It may have seemed too hippie-dippy and quantum mechanics has enough new-age groupies without attracting more.
earls
1 / 5 (2) Feb 15, 2008
GOD forbid they be named their numerical values

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.