Blinded by sFRP-1: A WNT signaling protein plays a key role in glaucoma

Feb 15, 2008

Glaucoma is one of the major causes of visual impairment and blindness throughout the world. A major risk factor for the disease is an increase in the pressure in the eye (intraocular pressure [IOP]). IOP is determined by the rate of production of the clear fluid in the eye and the rate at which this fluid flows out of the eye.

Although it is thought that impaired outflow of fluid from the eye causes the increased IOP in individuals with glaucoma, the precise molecular mechanisms underlying the disorder are poorly understood.

In a new study, Abbot Clark and his colleagues, at Alcon Research Ltd. in Fort Worth and the University of Iowa in Iowa City, have revealed that increased expression of the protein sFRP-1, an inhibitor of cell signaling through WNT proteins, seems to be responsible for elevated IOP in individuals with glaucoma.

The researchers found increased expression of sFRP-1 in eye tissue from patients with glaucoma. When donor human eyes were treated with sFRP-1 ex vivo, these eye tissues exhibited decreased outflow of fluids compared to untreated eyes.

Furthermore, the sFRP-1 treated donor eyes also had reduced expression of a WNT-related protein. Finally, increased IOP was observed in mice manipulated to express sFRP-1 in the eye and this was effectively resolved by treatment with an inhibitor of a downstream suppressor of WNT signaling. The authors therefore concluded that restoring WNT signaling might be a novel way to treat individuals with glaucoma.

Source: Journal of Clinical Investigation

Explore further: Research milestone in CCHF virus could help identify new treatments

add to favorites email to friend print save as pdf

Related Stories

Entrepreneurs aren't overconfident gamblers

19 minutes ago

Leaving one's job to become an entrepreneur is inarguably risky. But it may not be the fear of risk that makes entrepreneurs more determined to succeed. A new study finds entrepreneurs are also concerned about what they might ...

New complex oxides could advance memory devices

35 minutes ago

The quest for the ultimate memory device for computing may have just taken an encouraging step forward. Researchers at The City College of New York led by chemist Stephen O'Brien have discovered new complex ...

Recommended for you

A new way to prevent the spread of devastating diseases

5 hours ago

For decades, researchers have tried to develop broadly effective vaccines to prevent the spread of illnesses such as HIV, malaria, and tuberculosis. While limited progress has been made along these lines, ...

New molecule allows for increase in stem cell transplants

6 hours ago

Investigators from the Institute for Research in Immunology and Cancer (IRIC) at the Université de Montréal have just published, in the prestigious magazine Science, the announcement of the discovery of a new molecule, the fi ...

Team explores STXBP5 gene and its role in blood clotting

8 hours ago

Two independent groups of researchers led by Sidney (Wally) Whiteheart, PhD, of the University of Kentucky, and Charles Lowenstein, MD, of the University of Rochester, have published important studies exploring the role that ...

User comments : 0