NASA Know-How Helps Athletes Rocket Through Water

Feb 12, 2008

When a swimsuit manufacturer wanted to create a better fabric for competitive swimmers, it sought out some unlikely experts -- aerospace engineers at NASA's Langley Research Center in Hampton.

NASA has decades of experience in fluid dynamics and drag reduction. However, aerospace engineers usually concentrate on the element through which airplanes and spacecraft fly, not the liquid through which swimmers travel. Still, some of the science is similar.

"Air and water are both what are referred to as Newtonian fluids," said Steve Wilkinson, a researcher at Langley's Fluid Physics and Control Branch. "Air has different fluid properties than water, including lower density and viscosity, but it still obeys the same physical laws of motion."

That fact led Warnaco Inc. of New York, the U.S. licensee of the Speedo swimwear brand, to seek use of a NASA wind tunnel at Langley to test swimsuit fabrics that may be used by athletes in international competitions.

"We evaluated the surface roughness effects of nearly 60 fabrics or patterns in our small low-speed tunnel, which is perfect for this purpose," Wilkinson said. "We were assessing which fabrics and weaves had the lowest drag."

Reducing drag helps planes fly more efficiently, and reducing drag helps swimmers go faster. Studies indicate viscous drag, or skin friction, is about one-third of the total restraining force on a swimmer. Wind tunnel tests measure the drag on the surface of the fabrics.

Wilkinson and other NASA researchers usually spend their time studying drag reduction for airplanes. They even have worked on drag reduction technology for boats, including an America's Cup winner in the 1980s. This expertise is one reason Speedo chose to work with NASA.

"This is the first time I've tested a fabric and there were some challenges involved," said Wilkinson. "I think we've done a really good job with the help of Speedo in coming up with a protocol that enables us to test these fabrics with ease and precision."

The materials tested come in the form of tubes. Wilkinson stretches the tubes over a smooth, flat aluminum plate and then secures the edges with smooth metal rails and tape to form a precise rectangular model shape. Wilkinson runs the material through a number of wind speeds and, with the help of sensors, measures drag on the surface. Under a reimbursable agreement, NASA turns the wind tunnel data over to Speedo for their use.

"It turns out to simulate a swimmer in the water at about two meters per second, we need to run the wind tunnel at about 28 meters per second, which is well within its capability," Wilkinson added. "The tests generally have shown the smoother the fabric, the lower the drag."

Speedo International's research and development team, Aqualab, took those results and used them to help create a new swimsuit the company says is its most hydro-dynamically advanced to date.

Source: NASA

Explore further: New research predicts when, how materials will act

add to favorites email to friend print save as pdf

Related Stories

Trial nears in high-profile Silicon Valley sex bias case

2 hours ago

(AP)—A jury was picked Monday to determine whether a venerable Silicon Valley venture capital firm is liable in a sexual discrimination lawsuit or is the victim of a former employee forced out because of ...

UN report urges drones for peace missions

2 hours ago

A UN report is calling for drones to be deployed in most peacekeeping missions as part of a major technological leap needed to help the United Nations confront world crises, the lead expert of the study said Monday.

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

earls
not rated yet Feb 13, 2008
Curious in this respect would be the effects of creating a "double layer" between the water and the object or person traveling through it.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.