'Lab on a chip' mimics brain chemistry

Feb 12, 2008

Johns Hopkins researchers from the Whiting School of Engineering and the School of Medicine have devised a micro-scale tool - a lab on a chip - designed to mimic the chemical complexities of the brain. The system should help scientists better understand how nerve cells in the brain work together to form the nervous system.

A report on the work appears as the cover story in the February 2008 issue of the British journal Lab on a Chip.

”The chip we’ve developed will make experiments on nerve cells more simple to conduct and to control,” says Andre Levchenko, Ph.D., associate professor of biomedical engineering at the Johns Hopkins Whiting School of Engineering and faculty affiliate of the Institute for NanoBioTechnology.

Nerve cells decide which direction to grow by sensing both the chemical cues flowing through their environment as well as those attached to the surfaces that surround them. The chip, which is made of a plastic-like substance and covered with a glass lid, features a system of channels and wells that allow researchers to control the flow of specific chemical cocktails around single nerve cells.

“It is difficult to establish ideal experimental conditions to study how neurons react to growth signals because so much is happening at once that sorting out nerve cell connections is hard, but the chip, designed by experts in both brain chemistry and engineering, offers a sophisticated way to sort things out,” says Guo-li Ming, M.D., Ph.D., associate professor of neurology at the Johns Hopkins School of Medicine and Institute for Cell Engineering.

In experiments with their chip, the researchers put single nerve cells, or neurons, onto the chip then introduced specific growth signals (in the form of chemicals). They found that the growing neurons turned and grew toward higher concentrations of certain chemical cues attached to the chip’s surfaces, as well as to signaling molecules free-flowing in solution.

When researchers subjected the neurons to conflicting signals (both surface bound and cues in solution), they found that the cells turned randomly, suggesting that cells do not choose one signal over the other. This, according to Levchenko, supports the prevailing theory that one cue can elicit different responses depending on a cell’s surroundings.

“The ability to combine several different stimuli in the chip resembles a more realistic environment that nerve cells will encounter in the living animal,” Ming says. This in turn will make future studies on the role of neuronal cells in development and regeneration more accurate and complete.

Source: Johns Hopkins Medical Institutions

Explore further: US scientists make embryonic stem cells from adult skin

add to favorites email to friend print save as pdf

Related Stories

The promise and peril of nanotechnology

Mar 26, 2014

Scientists at Northwestern University have found a way to detect metastatic breast cancer by arranging strands of DNA into spherical shapes and using them to cover a tiny particle of gold, creating a "nano-flare" ...

Colored diamonds are a superconductor's best friend

Mar 06, 2014

(Phys.org) —Flawed but colorful diamonds are among the most sensitive detectors of magnetic fields known today, allowing physicists to explore the minuscule magnetic fields in metals, exotic materials and ...

Nanotechnology to help in healing hearts

Feb 21, 2014

Professor Sami Franssila is participating in a research project that could, if successful, revolutionise the treatment of coronary thrombosis and brain damage.

Cochlear implants—with no exterior hardware

Feb 09, 2014

Cochlear implants—medical devices that electrically stimulate the auditory nerve—have granted at least limited hearing to hundreds of thousands of people worldwide who otherwise would be totally deaf. ...

Recommended for you

Leeches help save woman's ear after pit bull mauling

Apr 18, 2014

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

New pain relief targets discovered

Apr 17, 2014

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

User comments : 0

More news stories

Cancer stem cells linked to drug resistance

Most drugs used to treat lung, breast and pancreatic cancers also promote drug-resistance and ultimately spur tumor growth. Researchers at the University of California, San Diego School of Medicine have discovered ...

Poll: Big Bang a big question for most Americans

Few Americans question that smoking causes cancer. But they have more skepticism than confidence in global warming, the age of the Earth and evolution and have the most trouble believing a Big Bang created the universe 13.8 ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.