Researchers produce nanowires easier, faster than before

Feb 08, 2008
Researchers produce nanowires easier, faster than before
A section of nanowire produced by Texas A&M mechanical engineering researchers postdoctoral researcher Subrata Kundu and associate professor Hong Liang. The electrically conducting nanowire is about 1/1,000 the width of a human hair and could be used in developing nanoscale electronic devices.

Sometimes simpler is better. Engineering researchers at Texas A&M University have developed a new way to produce ultra-thin electricity-conducting wire that is simpler and faster than existing processes.

"Other methods used to produce nanowires use high temperatures and high pressure," said Subrata Kundu, a post-doctoral researcher in the research group of Hong Liang, an associate professor in Texas A&M's Department of Mechanical Engineering. "This method is much simpler and faster."

Kundu and Liang described the process in an article in the current issue of the journal Advanced Materials.

The process developed by Kundu and Liang works by shining ultraviolet light on a mixture of strands of DNA, cadmium sulfate and thioacetamide for about six hours. UV light breaks thioacetamide to produce sulfide ions (S2-). Chemical changes produced by the UV light allow the cadmium sulfate molecules to bind to the DNA. The resulting nanowires — about 1,000 times thinner than a human hair — conduct electricity and could be used in the development of so-called nano-scale electronic devices like small chips to make tiny computer or medical devices.

Nano-scale devices range in size from the size of a molecule to about 100 nanometers. One meter is 1 billion nanometers long.

Liang and Kundu plan to continue research in this area using different metals — lead, zinc and molybdenum — to produce the nanowires. Kundu said working with the other metals will give the researchers important information about how the process works.

The UV process also allows nanowires to be built on DNA arranged in two or three dimensions, t-joints and cubes, for example. This opens the possibility of using the process to build entire nano-scale circuits.

Source: Texas A&M University

Explore further: Researchers use oxides to flip graphene conductivity

add to favorites email to friend print save as pdf

Related Stories

Extra-short nanowires best for brain

Jan 15, 2015

If in the future electrodes are inserted into the human brain - either for research purposes or to treat diseases - it may be appropriate to give them a 'coat' of nanowires that could make them less irritating for the brain ...

Uniform nanowire arrays for science and manufacturing

Dec 03, 2014

Defect-free nanowires with diameters in the range of 100 nanometers (nm) hold significant promise for numerous in-demand applications including printable transistors for flexible electronics, high-efficiency ...

Recommended for you

Researchers use oxides to flip graphene conductivity

17 hours ago

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

Jan 26, 2015

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.