Researchers produce nanowires easier, faster than before

Feb 08, 2008
Researchers produce nanowires easier, faster than before
A section of nanowire produced by Texas A&M mechanical engineering researchers postdoctoral researcher Subrata Kundu and associate professor Hong Liang. The electrically conducting nanowire is about 1/1,000 the width of a human hair and could be used in developing nanoscale electronic devices.

Sometimes simpler is better. Engineering researchers at Texas A&M University have developed a new way to produce ultra-thin electricity-conducting wire that is simpler and faster than existing processes.

"Other methods used to produce nanowires use high temperatures and high pressure," said Subrata Kundu, a post-doctoral researcher in the research group of Hong Liang, an associate professor in Texas A&M's Department of Mechanical Engineering. "This method is much simpler and faster."

Kundu and Liang described the process in an article in the current issue of the journal Advanced Materials.

The process developed by Kundu and Liang works by shining ultraviolet light on a mixture of strands of DNA, cadmium sulfate and thioacetamide for about six hours. UV light breaks thioacetamide to produce sulfide ions (S2-). Chemical changes produced by the UV light allow the cadmium sulfate molecules to bind to the DNA. The resulting nanowires — about 1,000 times thinner than a human hair — conduct electricity and could be used in the development of so-called nano-scale electronic devices like small chips to make tiny computer or medical devices.

Nano-scale devices range in size from the size of a molecule to about 100 nanometers. One meter is 1 billion nanometers long.

Liang and Kundu plan to continue research in this area using different metals — lead, zinc and molybdenum — to produce the nanowires. Kundu said working with the other metals will give the researchers important information about how the process works.

The UV process also allows nanowires to be built on DNA arranged in two or three dimensions, t-joints and cubes, for example. This opens the possibility of using the process to build entire nano-scale circuits.

Source: Texas A&M University

Explore further: Graphene sensor tracks down cancer biomarkers

add to favorites email to friend print save as pdf

Related Stories

Bacterial nanowires: Not what we thought they were

Aug 18, 2014

For the past 10 years, scientists have been fascinated by a type of "electric bacteria" that shoots out long tendrils like electric wires, using them to power themselves and transfer electricity to a variety ...

Scientists explore mash-up of vacuum tube and MOSFET

Jun 25, 2014

Thumb-size vacuum tubes that amplified signals in radio and television sets in the first half of the 20th century might seem nothing like the metal-oxide semiconductor field-effect transistors (MOSFETs) that ...

Recommended for you

Engineered proteins stick like glue—even in water

1 hour ago

Shellfish such as mussels and barnacles secrete very sticky proteins that help them cling to rocks or ship hulls, even underwater. Inspired by these natural adhesives, a team of MIT engineers has designed new materials that ...

Smallest possible diamonds form ultra-thin nanothreads

1 hour ago

For the first time, scientists have discovered how to produce ultra-thin "diamond nanothreads" that promise extraordinary properties, including strength and stiffness greater than that of today's strongest ...

User comments : 0