The key to survival and virulence for a fungal pathogen is autophagy

Feb 08, 2008

Autophagy is a process whereby cells recycle material during stress situations, such as when nutrients are scarce. Some cells also use this process as an immune defense mechanism to eliminate pathogens. However, new data, generated in mice by Peter Williamson and colleagues, at the University of Illinois at Chicago, has identified autophagy as a new virulence-associated trait and survival mechanism for Cryptococcus neoformans — a fungal pathogen that commonly infects immunocompromised individuals, such as those with HIV.

In the study, a mutant form of C. neoformans that lacked the protein Vps34 PI3K (known as the vps34D mutant) was found to be less able to form autophagy-related 8–labeled (Atg8-labeled) vesicles than normal C. neoformans.

Furthermore, the vps34D mutant was less virulent in mice than normal C. neoformans. Consistent with a crucial role for autophagy in determining the extent of the disease caused by infection with C. neoformans, a strain of C. neoformans in which Atg8 expression was knocked down showed reduced virulence in mice. The authors therefore suggested that more detailed understanding of this virulence pathway might lead to new drugs for treating individuals who become infected with C. neoformans.

Source: Journal of Clinical Investigation

Explore further: Firm targets 3D printing synthetic tissues, organs

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Firm targets 3D printing synthetic tissues, organs

31 minutes ago

(Medical Xpress)—A University of Oxford spin-out, OxSyBio, will develop 3D printing techniques to produce tissue-like synthetic materials for wound healing and drug delivery. In the longer term the company ...

Gate for bacterial toxins found

15 hours ago

Prof. Dr. Dr. Klaus Aktories and Dr. Panagiotis Papatheodorou from the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg have discovered the receptor responsible ...

User comments : 0

More news stories

Firm targets 3D printing synthetic tissues, organs

(Medical Xpress)—A University of Oxford spin-out, OxSyBio, will develop 3D printing techniques to produce tissue-like synthetic materials for wound healing and drug delivery. In the longer term the company ...

Survival hope for melanoma patients thanks to new vaccine

(Medical Xpress)—University of Adelaide researchers have discovered that a new trial vaccine offers the most promising treatment to date for melanoma that has spread, with increased patient survival rates and improved ability ...

New clinical trial launched for advance lung cancer

Cancer Research UK is partnering with pharmaceutical companies AstraZeneca and Pfizer to create a pioneering clinical trial for patients with advanced lung cancer – marking a new era of research into personalised medicines ...

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...