Compact, wavelength-on-demand Quantum Cascade Laser chip created

Feb 06, 2008
Compact, wavelength-on-demand Quantum Cascade Laser chip created

Engineers at Harvard's School of Engineering and Applied Sciences have demonstrated a highly versatile, compact and portable Quantum Cascade Laser sensor for the fast detection of a large number of chemicals, ranging from infinitesimal traces of gases to liquids, by broad tuning of the emission wavelength. The potential range of applications is huge, including homeland security, medical diagnostics such as breadth analysis, pollution monitoring, and environmental sensing of the greenhouse gases responsible for global warming.

The team, which reported its findings in the Dec. 3 issue of Applied Physics Letters, was headed by Federico Capasso, the Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering, and includes graduate student Benjamin Lee, researchers Mikhail Belkin and Jim MacArthur, and undergraduate Ross Audet, all of Harvard's School of Engineering and Applied Sciences. The researchers have also filed for U.S. patents covering this new class of laser chips.

The broad emission spectrum of the Quantum Cascade Laser material, grown by a commercial reactor used for the mass production of semiconductor lasers, is designed using state-of-the-art nanotechnology by controlling the size of nanometric thin quantum wells in the active region.

An array of 32 lasers, each designed to emit at a specific wavelength, is then fabricated on a single chip by standard semiconductor processing techniques to have a size of less than one-fourth of a dime. A microcomputer individually fires up and tunes each laser in the array in any desired sequence. This generates a broad and continuously tunable wavelength spectrum that can be used to detect a large number of chemical compounds.

"Our versatile laser spectrometer currently emits any wavelengths between 8.7 and 9.4 microns, in the so-called 'molecular fingerprint region' where most molecules have their telltale absorption features which uniquely identify them," Belkin says. "This ability to design a broad laser spectrum anywhere in the fingerprint region holds the promise of replacing the bulky and large infrared spectrometers currently used for chemical analysis and sensing."

The tunability of the laser chip can be extended up to 10-fold and several widely spaced absorption features can be targeted with the same chip, which will enable the detection in parallel of an extremely large number of trace gases in concentrations of parts per billion in volume. A portable compact spectrometer with this capability would revolutionize chemical sensing.

"These millimeter-size laser chips exploit the inherent enormous wavelength agility of state-of-the-art Quantum Cascade Lasers," says Capasso, who co-invented them in 1994 at Bell Labs. "As a first application we have shown that these widely tunable and extremely compact sensors can measure the spectrum of liquids with the same accuracy and reproducibility of state-of-the-art infrared spectrometers, but with inherently greater spectral resolution."

Source: Harvard University

Explore further: New microscope collects dynamic images of the molecules that animate life

add to favorites email to friend print save as pdf

Related Stories

Era of astronomical discovery

Jul 08, 2014

For much of her professional life, MIT professor Nergis Mavalvala has been devoted to a singular goal: creating a device to detect gravitational waves. These ripples in the fabric of space-time—the signature ...

Continuous terahertz sources demonstrated at room temperature

Jun 05, 2014

Imagine a technology that could allow us to see through opaque surfaces without exposure to harmful x-rays, that could give us the ability to detect harmful chemicals and bio-agents from a safe distance, and that could enable ...

Recommended for you

Cooling with molecules

Oct 22, 2014

An international team of scientists have become the first ever researchers to successfully reach temperatures below minus 272.15 degrees Celsius – only just above absolute zero – using magnetic molecules. ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Feb 06, 2008
One step closer to the star trek tricorder...
not rated yet Feb 06, 2008
this is officially half on and off the quantum hook.