Imaging study reveals rapid formation of Alzheimer's-associated plaques

Feb 06, 2008

The amyloid plaques found in the brains of Alzheimer’s disease patients may form much more rapidly than previously expected. Using an advanced microscopic imaging technique to examine brain tissue in mouse models of the devastating neurological disorder, researchers from the MassGeneral Institute for Neurodegenerative Disease (MGH-MIND), working with colleagues from Washington University School of Medicine, find that plaques can develop in as little as a day and that Alzheimer’s-associated neuronal changes appear soon afterwards. Their report will appear in the Feb. 7 issue of Nature.

“While we’ve known for a long time what amyloid plaques and other changes seen in the brains of Alzheimer’s patients look like, we didn’t know in what order and at what speed those changes occur,” says Bradley Hyman, MD, PhD, director of the Alzheimer’s Unit at MGH-MIND and senior author of the Nature paper. “Understanding the rules that govern plaque formation may lead us to ideas about how to intervene in the process.”

To investigate the timing of these brain changes, the researchers used a novel technique for microscopically imaging the brains of living animals. Using several strains of transgenic mice destined to develop amyloid plaques, they imaged initially plaque-free areas of the brain on a regular basis – first weekly and, in subsequent experiments, daily. Although plaques formed rarely, they could appear as little as 24 hours after a previous plaque-free image was taken. The new plaques were similar in appearance to those seen in the brains of Alzheimer’s patients and in the mouse models, and subsequent imaging showed little change in the size of plaques once they had formed.

Earlier investigations have shown that levels of microglia – neuronal support cells that react to inflammation and other damage – rise in the vicinity of amyloid plaques. Imaging an Alzheimer’s mouse model that expresses a fluorescent marker in microglia showed that the cells were attracted to new plaques within a day of formation. Although there was no evidence that microglia were actively removing the plaques, the investigators hypothesize that they may help restrict further plaque growth. Examining neurons adjacent to plaques showed that the kind of changes associated with Alzheimer’s – distortions in the projections through which neuronal signals pass – appear rapidly and approach maximum effect within five days.

“These results confirm the suspicion we’ve had that plaques are a primary event in the glial and neuronal changes that underlie Alzheimer’s dementia,” Hyman says. “We hope that what we’ve learned about the time frame and sequence of events will help us find ways to keep plaques from forming.” Hyman is the John Penny Professor of Neurology at Harvard Medical School.

Source: Massachusetts General Hospital

Explore further: Testing time for stem cells

add to favorites email to friend print save as pdf

Related Stories

Who owns space?

29 minutes ago

The golden age of planetary exploration had voyagers navigating new sea routes to uncharted territory. These territories were then claimed in the name of the monarchs who had financed the expeditions. All ...

Asteroid 2014 SC324 zips by Earth Friday afternoon

19 minutes ago

What a roller coaster week it's been. If partial eclipses and giant sunspots aren't your thing, how about a close flyby of an Earth-approaching asteroid?  2014 SC324 was discovered on September 30 this ...

New oscillator for low-power implantable transcievers

46 minutes ago

Arash Moradi and Mohamad Sawan from Polytechnique Montreal in Canada discuss their new low-power VCO design for medical implants. This oscillator was implemented to provide the frequency deviation of frequency-shift-keying ...

Recommended for you

Testing time for stem cells

1 hour ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

21 hours ago

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 0