Calcium aids protein folding as therapy for enzymes in types of lysosomal storage diseases

Feb 05, 2008

Lysosomes are organelles that break down macromolecules in a cell, and this process is crucial for maintaining healthy cells. A lysosomal storage disease results from deficient activity of the hydrolytic enzymes, responsible for the breakdown of defunct molecules.

Currently, lysosomal storage diseases are treated by enzyme replacement therapy. This can be challenging because the enzyme has to find its proper way into cells and lysosomes to function. In neuropathic diseases, enzyme replacement is not useful because recombinant enzymes do not enter the brain.

This week in the open-access online journal PLoS Biology, Tingwei Mu, Douglas Fowler, and Jeffrey Kelly show that diltiazem and verapamil, potent FDA approved L-type Ca2+ channel blocking drugs, could restore the activity of mutant lysosomal enzymes associated with three distinct lysosomal storage diseases. The drugs acted by increasing the endoplasmic reticulum (ER) folding capacity and trafficking.

These compounds appear to function through a Ca2+ ion-mediated upregulation of a subset of cytoplasmic and ER lumenal chaperones, possibly by activating signaling pathways that lessen cellular stress. They have shown that increasing ER calcium levels appears to be a relatively selective strategy to partially restore mutant lysosomal enzyme homeostasis in diseases caused by the misfolding and degradation of mutant enzymes. Since diltiazem crosses the blood-brain barrier, it may be useful for the treatment of neuropathic lysosomal storage diseases, and possibly other loss-of-function diseases, although efficacy needs to be demonstrated before this happens.

Citation: Mu TW, Fowler DM, Kelly JW (2008) Partial restoration of mutant enzyme homeostasis in three distinct lysosomal storage disease cell lines by altering calcium homeostasis PLoS Biol 6(2): e26. doi:10.1371/journal.pbio.0060026

Source: Public Library of Science

Explore further: Bulletproof nuclei? Stem cells exhibit unusual absorption property

add to favorites email to friend print save as pdf

Related Stories

Growing corn to treat rare disease

Sep 21, 2012

(Phys.org)—The seeds of greenhouse-grown corn could hold the key to treating a rare, life-threatening childhood genetic disease, according to researchers from Simon Fraser University.

Enhancing RNA interference

Jun 24, 2013

Nanoparticles that deliver short strands of RNA offer a way to treat cancer and other diseases by shutting off malfunctioning genes. Although this approach has shown some promise, scientists are still not ...

Recommended for you

Plants with dormant seeds give rise to more species

Apr 18, 2014

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Researchers successfully clone adult human stem cells

Apr 18, 2014

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

User comments : 0

More news stories

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Growing app industry has developers racing to keep up

Smartphone application developers say they are challenged by the glut of apps as well as the need to update their software to keep up with evolving phone technology, making creative pricing strategies essential to finding ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.