2 genes found to play crucial role in cell survival

Feb 04, 2008

New research suggests that two recently discovered genes are critically important for controlling cell survival during embryonic development.

The genes, called E2F7 and E2F8, are the least understood members of a family of genes that play a fundamental role in animal development. Members of this family are also involved in cancers of the breast, bladder, stomach and colon.

This animal study showed that complete loss of the two genes causes massive cell death and is lethal in developing embryos.

It also showed that the two genes prevent this cell death largely by suppressing the activity of another member of the family, called E2f1. This third gene is known to play an important role in triggering programmed cell death, or apoptosis, in embryos.

The findings by researchers at the Ohio State University Comprehensive Cancer Center are published in the Jan. 15 issue of the journal Developmental Cell, with an accompanying commentary.

“Until now, almost nothing was known about the function of these two genes in animals,” says principal investigator Gustavo Leone, an associate professor of molecular virology, immunology and medical genetics at Ohio State’s Comprehensive Cancer Center.

“Our study not only shows that both these genes are critical for embryonic development, but also how members of this gene family work together to regulate cell survival and proliferation.”

Leone and his colleagues used mice that were missing either E2f7 or E2f8, or both genes, and mice missing both genes and the E2f1 gene.

Their experiments showed that embryos survived, and massive cell death was prevented, if they had at least one copy (of the normal two) of either of the two genes.

When the two genes were entirely missing, however, massive cell death and other problems occurred that were lethal before birth. On the other hand, embryos that were completely missing both genes and missing the E2f1 gene, did not show the massive cell death, although they also died before birth. “This of course means that E2f7 and E2f8 are doing more than just regulating cell death, and we are now exploring new avenues of their function,” Leone says.

“Overall,” he says, “our findings indicate that these two genes are essential for embryonic development and for preventing widespread cell death, mainly by targeting the E2f1 gene.”

Source: Ohio State University Medical Center

Explore further: Researcher looks at public perceptions around newborn testing

add to favorites email to friend print save as pdf

Related Stories

Synthetic gene circuits pump up cell signals

Apr 08, 2014

(Phys.org) —Synthetic genetic circuitry created by researchers at Rice University is helping them see, for the first time, how to regulate cell mechanisms that degrade the misfolded proteins implicated ...

Anticipating the future of doping in sport

Mar 21, 2014

Doping in sport is nothing new. Ancient Greek athletes used stimulating potions to fortify themselves. Strychnine, caffeine, cocaine, and alcohol were regularly used by cyclists in the 19th century. Marathon ...

Catching the early spread of breast cancer

Mar 19, 2014

When cancer spreads from one part of the body to another, it becomes even more deadly. It moves with stealth and can go undetected for months or years. But a new technology that uses "nano-flares" has the potential to catch ...

Recommended for you

Down's chromosome cause genome-wide disruption

19 hours ago

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

Research uncovers DNA looping damage tied to HPV cancer

Apr 16, 2014

It's long been known that certain strains of human papillomavirus (HPV) cause cancer. Now, researchers at The Ohio State University have determined a new way that HPV might spark cancer development – by ...

New therapy against rare gene defects

Apr 15, 2014

On 15th April is the 1st International Pompe Disease Day, a campaign to raise awareness of this rare but severe gene defect. Pompe Disease is only one of more than 40 metabolic disorders that mainly affect children under ...

User comments : 0

More news stories

Classifying cognitive styles across disciplines

Educators have tried to boost learning by focusing on differences in learning styles. Management consultants tout the impact that different decision-making styles have on productivity. Various fields have ...

Internet use may cut retirees' depression

Spending time online has the potential to ward off depression among retirees, particularly among those who live alone, according to research published online in The Journals of Gerontology, Series B: Psychological Sciences an ...

Tiny power plants hold promise for nuclear energy

Small underground nuclear power plants that could be cheaper to build than their behemoth counterparts may herald the future for an energy industry under intense scrutiny since the Fukushima disaster, the ...