Birds, bats and insects hold secrets for aerospace engineers

Feb 04, 2008
Birds, bats and insects hold secrets for aerospace engineers

Natural flyers like birds, bats and insects outperform man-made aircraft in aerobatics and efficiency. University of Michigan engineers are studying these animals as a step toward designing flapping-wing planes with wingspans smaller than a deck of playing cards.

A Blackbird jet flying nearly 2,000 miles per hour covers 32 body lengths per second. But a common pigeon flying at 50 miles per hour covers 75.

The roll rate of the aerobatic A-4 Skyhawk plane is about 720 degrees per second. The roll rate of a barn swallow exceeds 5,000 degrees per second.

Select military aircraft can withstand gravitational forces of 8-10 G. Many birds routinely experience positive G-forces greater than 10 G and up to 14 G.

“Natural flyers obviously have some highly varied mechanical properties that we really have not incorporated in engineering,” said Wei Shyy, chair of the Aerospace Engineering department and an author of the new book “The Aerodynamics of Low Reynolds Number Flyers.”

“They’re not only lighter, but also have much more adaptive structures as well as capabilities of integrating aerodynamics with wing and body shapes, which change all the time,” Shyy said. “Natural flyers have outstanding capabilities to remain airborne through wind gusts, rain, and snow.” Shyy photographs birds to help him understand their aerodynamics.

Pressure generated during flight cause the flapping wings to deform, he explained. In turn, the deformed wing tells the air that the wing shape is different than it appears in still air. If appropriately handled, this phenomenon can delay stall, enhance stability and increase thrust.

Flapping flight is inherently unsteady, but that’s why it works so well. Birds, bats and insects fly in a messy environment full of gusts traveling at speeds similar to their own. Yet they can react almost instantaneously and adapt with their flexible wings.

Shyy and his colleagues have several grants from the Air Force totaling more than $1 million a year to research small flapping wing aircraft. Such aircraft would fly slower than their fixed wing counterparts, and more importantly, they would be able to hover and possibly perch in order to monitor the environment or a hostile area. Shyy’s current focus is on the aerodynamics of flexible wings related to micro air vehicles with wingspans between 1 and 3 inches.

“These days, if you want to design a flapping wing vehicle, you could build one with trial and error, but in a controlled environment with no wind gusts,” Shyy said. “We are trying to figure out how to design a vehicle that can perform a mission in an uncertain environment. When the wind blows, how do they stay on course?”

A dragonfly, Shyy says, has remarkable resilience to wind, considering how light it is. The professor chalks that up to its wing structure and flight control. But the details are still questions.

“We’re really just at the beginning of this,” Shyy said.

Shyy is the Clarence L. "Kelly" Johnson Collegiate Professor of Aerospace Engineering. Other authors of the book, “Aerodynamics of Low Reynolds Number Flyers” are: U-M research scientists Yongsheng Lian, Jian Tang and Dragos Viieru, and Hao Liu, professor of Biomechanical Engineering at Chiba University in Japan.

Other collaborators on this research include professors Luis Bernal, Carlos Cesnik and Peretz Friedmann of the University of Michigan; Hao Liu of Chiba University in Japan; Peter Ifju, Rick Lind and Larry Ukeiley of University of Florida, and Sean Humbert of University of Maryland.

Source: University of Michigan

Explore further: Firm combines 3-D printing with ancient foundry method

add to favorites email to friend print save as pdf

Related Stories

DARPA seeks new positioning, navigation, timing solutions

5 hours ago

The Defense Advanced Research Projects Agency (DARPA), writing about GPS, said: "The military relies heavily on the Global Positioning System (GPS) for positioning, navigation, and timing (PNT), but GPS access is easily blocked by methods such as jamming. In addition, many environments in which our mil ...

Lights out in Australia as Earth Hour kicks off

5 hours ago

The Sydney Harbour Bridge and the sails on the nearby Opera House went dark Saturday, as lights on landmarks around Australia were switched off for the global climate change awareness campaign Earth Hour.

Future US Navy: Robotic sub-hunters, deepsea pods

9 hours ago

The robotic revolution that transformed warfare in the skies will soon extend to the deep sea, with underwater spy "satellites," drone-launching pods on the ocean floor and unmanned ships hunting submarines.

Recommended for you

Firm combines 3-D printing with ancient foundry method

Mar 27, 2015

A century-old firm that's done custom metal work for some of the nation's most prestigious buildings has combined 3-D printing and an ancient foundry process for a project at the National Archives Building in Washington, ...

Wearable device helps vision-impaired avoid collision

Mar 26, 2015

People who have lost some of their peripheral vision, such as those with retinitis pigmentosa, glaucoma, or brain injury that causes half visual field loss, often face mobility challenges and increased likelihood ...

Applications of optical fibre for sensors

Mar 26, 2015

Mikel Bravo-Acha's PhD thesis has focused on the applications of optical fibre as a sensor. In the course of his research, conducted at the NUP/UPNA-Public University of Navarre, he monitored a sensor fitted to optical fibre ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.