Lab characterizes gene essential for prenatal development of nervous system

Feb 01, 2008

The Stowers Institute’s Trainor Lab has demonstrated the role of a gene important to the embryonic development of the nervous system, a process that requires coordination of differentiation of immature neural cells with the cycle of cell division that increases their numbers. Until now, the mechanisms regulating these distinct cellular activities have been poorly understood. The findings will be published in the Feb. 15 issue of Development.

In this work, the team used gain- and loss-of-function mutations in mice to isolate novel roles for the mouse Cux2 gene in regulating neurogenesis. They established that Cux2 directs neuroblast development, neuronal differentiation, and cell-fate determination in the spinal cord by coupling progression through the cycle of cell division with differentiation of neural cells by direct activation of two key neurogenic determinants, Neurod and p27Kipl.

“We were excited to uncover, for the first time, multiple functional roles for a Cux-like homeodomain transcription factor in regulating key aspects of spinal cord neurogenesis,” said Angelo Iulianella, Ph.D., Senior Research Associate and first author on the publication. “The demonstration that Cux2 integrates cell-cycle progression with neural progenitor differentiation and cell-fate determination provides a much clearer picture of the complex process of neurogenesis.”

“The impact of cell cycle length on the formation of interneurons versus motoneurons was a surprising finding,” said Paul Trainor, Ph.D., Associate Investigator, and senior author on the publication. “Ongoing work involves global proteomic analyses aimed at identifying the complete set of Cux2-interacting partners. We believe these efforts will be essential to understanding how Cux2 elicits its multiple functions during neurogenesis.”

Further analysis of Cux2 will make it possible to extend these findings not only to spinal cord development, but also to the mammalian cortex, where Cux genes demarcate specific upper layers of cortical neurons and may have played a role in the expansion and increased complexity of the cortex during evolution.

Source: Stowers Institute for Medical Research

Explore further: Artificial sweeteners linked to abnormal glucose metabolism

add to favorites email to friend print save as pdf

Related Stories

US judge fines HP $59 mn for bribing Russian officials

53 minutes ago

A judge on Thursday ordered US computer giant Hewlett-Packard to pay $58.8 million for bribing Russian government officials to win a big-money contract with the prosecutor general's office in that nation.

Solar storm heads Earth's way after double sun blasts

1 hour ago

Two big explosions on the surface of the sun will cause a moderate to strong geomagnetic storm on Earth in the coming days, possibly disrupting radio and satellite communications, scientists said Thursday.

US threatened Yahoo with huge fine over surveillance

2 hours ago

US authorities threatened to fine Yahoo $250,000 a day if it failed to comply with a secret surveillance program requiring it to hand over user data in the name of national security, court documents showed ...

Microbes evolve faster than ocean can disperse them

2 hours ago

Two Northeastern University researchers and their international colleagues have created an advanced model aimed at exploring the role of neutral evolution in the biogeographic distribution of ocean microbes.

Recommended for you

Connection found between birth size and brain disorders

9 hours ago

(Medical Xpress)—A trio of researchers has found what appears to be a clear connection between birth size and weight, and the two brain disorders, autism and schizophrenia. In their paper published in Proceedings of ...

A novel therapy for sepsis?

Sep 16, 2014

A University of Tokyo research group has discovered that pentatraxin 3 (PTX3), a protein that helps the innate immune system target invaders such as bacteria and viruses, can reduce mortality of mice suffering ...

User comments : 0