Electricity from a thin film

Feb 01, 2008
Electricity from a thin film
The flexible solar module is as small as the page of a book. © Fraunhofer ISE

Teams of researchers all over the world are working on the development of organic solar cells. The Fraunhofer Institute for Solar Energy Systems ISE in Freiburg is presenting avenues towards industrial mass production at the world’s largest trade fair for nanotechnology, the nano tech 2008 from February 21 through 23 in Tokyo.

Organic solar cells have good prospects for the future: They can be laid onto thin films, which makes them cheap to produce. Established printing technologies should be employed for their production of the future. In order to achieve this goal of suitable solar cell architecture as well a coating materials and substrates have to be developed. “This method permits a high throughput, so the greatest cost is that of materials,” says Michael Niggemann, a researcher at ISE.

Nevertheless, organic solar cells are not intended to compete with classic silicon cells – they are not nearly efficient enough to do that just yet. Because they are flexible, however, they can open up new fields of application: Plastic solar cells could supply the power for small mobile devices such as MP3 players or electronic ski passes. Another possibility would be to combine solar cells, sensors and electronic circuits on a small strip of plastic to form a self-sufficient power microsystem.

At nano tech in Tokyo, the Fraunhofer experts will be presenting a flexible solar module that is as small as the page of a book. It was produced by a method that can easily be transferred to roll-to-roll technology – a vital step en route to mass production.

A new design principle helps to save costs, too: Until now, the front electrode, the one that faces the sun, has usually been made of expensive indium tin oxide because this material is transparent. But now there is an alternative: The Fraunhofer crew has interconnected a poorly conductive transparent polymer electrode with a highly conductive metal layer on the rear side of the solar cell. This connection is done trough numerous tiny holes in the solar cell .This has the advantage that a low-priced material can be used. The idea has already been patented.

Source: Fraunhofer-Gesellschaft

Explore further: Fukushima accepts 'temporary' radioactive waste storage

add to favorites email to friend print save as pdf

Related Stories

Exploring Mars in low Earth orbit

Jul 31, 2014

In their quest to understand life's potential beyond Earth, astrobiologists study how organisms might survive in numerous environments, from the surface of Mars to the ice-covered oceans of Jupiter's moon, ...

Nano-supercapacitors for electric cars

Jul 01, 2014

Innovative nano-material based supercapacitors are set to bring mass market appeal a good step closer to the lukewarm public interest in Germany. This movement is currently being motivated by the advancements ...

Trapping the light fantastic

Jun 16, 2014

(Phys.org) —The development of a 'nanobarrel' that traps and concentrates light onto single molecules could be used as a low-cost and reliable diagnostic test.

Solar cells made from black silicon

Oct 01, 2012

Solar cells convert three-quarters of the energy contained in the Sun's spectrum into electricity – yet the infrared spectrum is entirely lost in standard solar cells. In contrast, black silicon solar cells ...

Solar modules embedded in glass

Jun 02, 2014

Organic solar modules have advantages over silicon solar cells. However, one critical problem is their shorter operating life. Researchers are working on a promising solution: they are using flexible glass ...

Circuits and sensors direct from the printer

Apr 30, 2014

Printers are becoming more and more versatile. Now they can even print sensors and electronic components on 2D and 3D substrates. A new, robot-assisted production line allows the process to be automated.

Recommended for you

Storing solar energy

11 hours ago

A research project conducted by Leclanché S.A., the Ecole Polytechnique Federale de Lausanne (EPFL), Romande Energie and with the financial support of the Canton of Vaud could bring a real added value in ...

Scientists get set for simulated nuclear inspection

15 hours ago

Some 40 scientists and technicians from around the world will descend on Jordan in November to take part in a simulated on-site inspection of a suspected nuclear test site on the banks of the Dead Sea.

User comments : 0