Electricity from a thin film

Feb 01, 2008
Electricity from a thin film
The flexible solar module is as small as the page of a book. © Fraunhofer ISE

Teams of researchers all over the world are working on the development of organic solar cells. The Fraunhofer Institute for Solar Energy Systems ISE in Freiburg is presenting avenues towards industrial mass production at the world’s largest trade fair for nanotechnology, the nano tech 2008 from February 21 through 23 in Tokyo.

Organic solar cells have good prospects for the future: They can be laid onto thin films, which makes them cheap to produce. Established printing technologies should be employed for their production of the future. In order to achieve this goal of suitable solar cell architecture as well a coating materials and substrates have to be developed. “This method permits a high throughput, so the greatest cost is that of materials,” says Michael Niggemann, a researcher at ISE.

Nevertheless, organic solar cells are not intended to compete with classic silicon cells – they are not nearly efficient enough to do that just yet. Because they are flexible, however, they can open up new fields of application: Plastic solar cells could supply the power for small mobile devices such as MP3 players or electronic ski passes. Another possibility would be to combine solar cells, sensors and electronic circuits on a small strip of plastic to form a self-sufficient power microsystem.

At nano tech in Tokyo, the Fraunhofer experts will be presenting a flexible solar module that is as small as the page of a book. It was produced by a method that can easily be transferred to roll-to-roll technology – a vital step en route to mass production.

A new design principle helps to save costs, too: Until now, the front electrode, the one that faces the sun, has usually been made of expensive indium tin oxide because this material is transparent. But now there is an alternative: The Fraunhofer crew has interconnected a poorly conductive transparent polymer electrode with a highly conductive metal layer on the rear side of the solar cell. This connection is done trough numerous tiny holes in the solar cell .This has the advantage that a low-priced material can be used. The idea has already been patented.

Source: Fraunhofer-Gesellschaft

Explore further: Power-generating urinal pioneered in Britain

add to favorites email to friend print save as pdf

Related Stories

Solar chip monitors windows

Jan 06, 2015

A new kind of radio chip is intended to warn when windows are left open. This way, you can avoid having the heat go out the window on cold days. The sensor also detects break-in attempts early on. The key: ...

Solar cells made from black silicon

Oct 01, 2012

Solar cells convert three-quarters of the energy contained in the Sun's spectrum into electricity – yet the infrared spectrum is entirely lost in standard solar cells. In contrast, black silicon solar cells ...

Variable glass coatings to stop condensation on windows

Oct 07, 2014

Thin-film coatings impart new properties to glass in applications as diverse as window glazing, solar cells and touchscreens. With the Megatron sputtering system, it is now possible for the first time to ...

Simulations for better transparent oxide layers

Sep 01, 2014

Touchscreens and solar cells rely on special oxide layers. However, errors in the layers' atomic structure impair not only their transparency, but also their conductivity. Using atomic models, Fraunhofer ...

Exploring Mars in low Earth orbit

Jul 31, 2014

In their quest to understand life's potential beyond Earth, astrobiologists study how organisms might survive in numerous environments, from the surface of Mars to the ice-covered oceans of Jupiter's moon, ...

Recommended for you

Power-generating urinal pioneered in Britain

40 minutes ago

British scientists on Thursday unveiled a toilet that unlocks energy stored within urine to generate electricity, which they hope could be used to light remote places such as refugee camps.

Why your laptop battery won't kill you

Mar 03, 2015

News on Tuesday that major U.S. airlines are no longer going to ship powerful lithium-ion batteries might lead some to fret about the safety of their personal electronic devices.

New incubator network to help clean-energy entrepreneurs

Mar 03, 2015

The Energy Department's National Renewable Energy Laboratory (NREL) and the Electric Power Research Institute (EPRI) have launched the Clean Energy Incubator Network. The program, funded by the Energy Department, aims to ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.