Electricity from a thin film

Feb 01, 2008
Electricity from a thin film
The flexible solar module is as small as the page of a book. © Fraunhofer ISE

Teams of researchers all over the world are working on the development of organic solar cells. The Fraunhofer Institute for Solar Energy Systems ISE in Freiburg is presenting avenues towards industrial mass production at the world’s largest trade fair for nanotechnology, the nano tech 2008 from February 21 through 23 in Tokyo.

Organic solar cells have good prospects for the future: They can be laid onto thin films, which makes them cheap to produce. Established printing technologies should be employed for their production of the future. In order to achieve this goal of suitable solar cell architecture as well a coating materials and substrates have to be developed. “This method permits a high throughput, so the greatest cost is that of materials,” says Michael Niggemann, a researcher at ISE.

Nevertheless, organic solar cells are not intended to compete with classic silicon cells – they are not nearly efficient enough to do that just yet. Because they are flexible, however, they can open up new fields of application: Plastic solar cells could supply the power for small mobile devices such as MP3 players or electronic ski passes. Another possibility would be to combine solar cells, sensors and electronic circuits on a small strip of plastic to form a self-sufficient power microsystem.

At nano tech in Tokyo, the Fraunhofer experts will be presenting a flexible solar module that is as small as the page of a book. It was produced by a method that can easily be transferred to roll-to-roll technology – a vital step en route to mass production.

A new design principle helps to save costs, too: Until now, the front electrode, the one that faces the sun, has usually been made of expensive indium tin oxide because this material is transparent. But now there is an alternative: The Fraunhofer crew has interconnected a poorly conductive transparent polymer electrode with a highly conductive metal layer on the rear side of the solar cell. This connection is done trough numerous tiny holes in the solar cell .This has the advantage that a low-priced material can be used. The idea has already been patented.

Source: Fraunhofer-Gesellschaft

Explore further: Environmentally compatible organic solar cells

add to favorites email to friend print save as pdf

Related Stories

Environmentally compatible organic solar cells

20 hours ago

Environmentally compatible production methods for organic solar cells from novel materials are in the focus of "MatHero". The new project coordinated by Karlsruhe Institute of Technology (KIT) aims at making ...

Managing renewables intelligently

Mar 25, 2014

Although more and more of our electrical energy is coming from sources where supply is variable – whether from wind turbines, solar parks or biomass facilities – grid structures, industry and private ...

Solar cells made from black silicon

Oct 01, 2012

Solar cells convert three-quarters of the energy contained in the Sun's spectrum into electricity – yet the infrared spectrum is entirely lost in standard solar cells. In contrast, black silicon solar cells ...

Organic lights and solar cells straight from the printer

Nov 05, 2013

Flickering façades, curved monitors, flashing clothing, fluorescent wallpaper, flexible solar cells – and all printable. This is no make-believe vision of the future; it will soon be possible using a new ...

Solar cells utilize thermal radiation

Nov 04, 2013

Thermal radiation from the sun is largely lost on most silicon solar cells. Up-converters transform the infrared radiation into usable light, however. Researchers have now for the first time successfully ...

Predicting the life expectancy of solar modules

Oct 22, 2013

Solar modules are exposed to many environmental influences that cause material to fatigue over the years. Researchers have developed a procedure to calculate effects of these influences over the long term. ...

Recommended for you

Floating nuclear plants could ride out tsunamis

21 hours ago

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects—specifically, ...

Unlocking secrets of new solar material

21 hours ago

(Phys.org) —A new solar material that has the same crystal structure as a mineral first found in the Ural Mountains in 1839 is shooting up the efficiency charts faster than almost anything researchers have ...

Ikea buys wind farm in Illinois

Apr 15, 2014

These days, Ikea is assembling more than just furniture. About 150 miles south of Chicago in Vermilion County, Ill., the home goods giant is building a wind farm large enough to ensure that its stores will never have to buy ...

A homemade solar lamp for developing countries

Apr 14, 2014

(Phys.org) —The solar lamp developed by the start-up LEDsafari is a more effective, safer, and less expensive form of illumination than the traditional oil lamp currently used by more than one billion people ...

User comments : 0

More news stories

Sony's PlayStation 4 sales top seven million

Sony says it has sold seven million PlayStation 4 worldwide since its launch last year and admitted it can't make them fast enough, in a welcome change of fortune for the Japanese consumer electronics giant.

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...