Ancient climate secrets raised from ocean depths

Feb 01, 2008

Scientists aboard the research vessel, Southern Surveyor, return to Hobart today with a collection of coral samples and photographs taken in the Southern Ocean at greater depths than ever before.

Using a remotely operated submersible vehicle the international research team captured images of life found on deep-sea pinnacles and valleys up to three kilometres beneath the Ocean’s surface.

During a three-week voyage, scientists from CSIRO’s Wealth from Oceans National Research Flagship and the US collaborated to retrieve examples of live and fossilised deep-ocean corals from a depth of 1650 metres near the Tasman Fracture Zone, south-east of Tasmania.

“These corals are evidence of an extinct coral reef,” says the voyage’s Chief Scientist, CSIRO Marine and Atmospheric Research’s Dr Ron Thresher. “Our sampling came up with some very old fossil corals of the type we are now seeing live and forming extensive reefs at depths of 800-1300 metres. This suggests that the reef extended much deeper in the past, but how long ago or why it died out, we don't know yet,” he says.

The composition of deep-sea corals is used to determine past ocean conditions, such as temperature, salinity and the mixing of surface and deep-water layers, over tens to hundreds of thousands of years.

Dr Thresher says over the coming year the samples will be examined to determine when these newly discovered reefs existed and if their extinction can be related to long-term climate patterns.

The findings will provide ancient climate data that contribute to models of regional and global climate change, based on historical circulation patterns in the Southern Ocean.

He says that at times the submersible vehicle – or Autonomous Benthic Explorer (ABE), on loan from the Woods Hole Oceanographic Institution (WHOI) – was pushed off course while exploring the extreme depths and, in two cases, had its forward progress stopped altogether. Such movements enabled researchers to identify previously unknown and unexpectedly strong, deep currents.

“The voyage was a success despite some of the roughest conditions ever experienced by the team, particularly in deploying the ABE,” Dr Thresher says.

Source: CSIRO Australia

Explore further: Antarctic ice sheet is result of CO2 decrease, not continental breakup

add to favorites email to friend print save as pdf

Related Stories

Why some fish can't go with the flow

Mar 07, 2014

Have you ever been snorkelling or scuba diving on a windy day when there are lots of waves? Did you notice how much that flow of water against your body affected your ability to swim and control your movements ...

Marine reserves: Finding the balance with oil and gas

Feb 06, 2014

How do we get the most out of our marine reserves? The government is in the process of reviewing Australia's network of marine protected areas. The review focuses on zones that exclude recreational fishers, and whether those fishers can be allowed back in. ...

The ocean's hidden waves show their power

Jan 08, 2014

Their effect on the surface of the ocean is negligible, producing a rise of just inches that is virtually imperceptible on a turbulent sea. But internal waves, which are hidden entirely within the ocean, ...

Recommended for you

NASA sees zombie Tropical Depression Genevieve reborn

15 hours ago

Infrared imagery from NASA's Aqua satellite helped confirm that the remnant low pressure area of former Tropical Storm Genevieve has become a Zombie storm, and has been reborn as a tropical depression on ...

Wave energy impact on harbour operations investigated

19 hours ago

Infragravity period oscillations—waves that occur between 25 and 300 seconds with a wavelength between 100m and 10km—can have an impact on berthing operations, depending on a harbour's geometry.

User comments : 0