Paired earthquakes separated in time and space

Jan 30, 2008

Earthquakes occurring at the edges of tectonic plates can trigger events at a distance and much later in time, according to a team of researchers reporting in today's issue of Nature. These doublet earthquakes may hold an underestimated hazard, but may also shed light on earthquake dynamics.

"The last great outer rise earthquakes that occurred were in the 1930s and 1970s," said Charles J. Ammon, associate professor of geoscience, Penn State. "We did not then have the equipment to record the details of those events." The outer rise is the region seaward of the deep-sea trench that marks the top of the plate boundary

In late 2006 and early 2007, two large earthquakes occurred near Japan separated by about 60 days. These earthquakes took place in the area of the Kuril Islands that are located from the westernmost point of the Japanese Island of Hokkaido to the southern tip of the Kamchatka Peninsula. The first event took place on Nov. 15, 2006 when the edge of the Pacific plate thrust under the arc of the Kuril Islands, initiating a magnitude 8.3 event and causing some damage in Japan and a small tsunami that caused minor damage in Crescent City, California. About 60 days later, on Jan. 13, 2007, a magnitude 8.1 earthquake occurred in "the upper portion of the Pacific plate, producing one of the largest recorded shallow extensional earthquakes."

This second earthquake was not at a plate boundary and was not directly caused by subduction -- the moving of one plate beneath the other. Rather, it was a normal faulting event, where the Pacific plate stretched, bent and broke.

While Japan and the Kamchatka Peninsula are active earthquake areas, the region of the Kuril Islands where the large November earthquake occurred, had not had a large earthquake since 1915 and researchers are unsure of the exact nature of that event.

Working with Hiroo Kanamori, the John E. and Hazel S. Smits professor of geophysics, emeritus, California Institute of Technology, and Thorne Lay, professor of Earth & planetary sciences, University of California, Santa Cruz, the Penn State researcher looked at the sequence of seismic activity that link these two earthquakes into a doublet.

"Such large doublet earthquakes, though rare, could be an underestimated hazard," says Ammon. "We are also interested in what these events tell us about how earthquakes interact, how the stresses and interactions allow one earthquake to trigger another."

Looking at the seismic record, the researchers found a series of smaller, foreshock earthquakes beginning about 45 days before Nov. 15. On Nov. 15, there was the magnitude 8.3 earthquake on the plate boundary, the largest event of 2006.

"Within minutes of the Nov. 15 earthquake, seismic activity began on the Pacific plate in the area where the January earthquake would take place," says Ammon. "This large second earthquake generated a larger amplitude of shaking in the frequency range that affects human-made structures than the first earthquake."

Usually, aftershocks from a large earthquake are at least one order of magnitude less than the main event and taper off rapidly. In this case, the events within the Pacific plate east of the plate boundary did not taper off, and the second event that occurred in January was about the same size as the first earthquake.

Earthquakes at plate boundaries in subduction zones occur when the plate that is going under – being subducted – gets temporarily stuck and causes compression in the plate away from the edge. Tension builds and when the plate overcomes the friction holding it, it moves downward, slipping under the top plate and causing an earthquake. According to the researchers, the second earthquake that occurred on the Pacific plate happened because of bending experienced by the pacific plate that occurs before it subducts beneath the upper plate. As the front edge of the plate slipped, the plate east of the November earthquake bent, cracked and broke in January.

Like pie crust, when the Earth's crust bends, small cracks begin to appear – these were the small shocks that began immediately after the first earthquake – but when the bending becomes severe, a larger region of the crust breaks – creating the second, very large event.

In the United States, subduction zones exist only in the Pacific Northwest, Alaska and the area around Puerto Rico. The researchers note, "Triggering of a large outer rise rupture with strong high-frequency shaking constitutes an important potential seismic hazard that needs to be considered in other regions."

Source: Penn State

Explore further: Warm US West, cold East: A 4,000-year pattern

add to favorites email to friend print save as pdf

Related Stories

Five dead as magnitude-8.2 quake hits northern Chile

Apr 02, 2014

A powerful magnitude-8.2 earthquake struck off northern Chile on Tuesday night, setting off a small tsunami that forced evacuations along the country's entire Pacific coast. Five people were crushed to death ...

Experts: Chile's M8.2 quake not 'the big one'

Apr 02, 2014

Authorities in northern Chile discovered surprisingly light damage and just six reported deaths Wednesday from a magnitude-8.2 quake—a remarkably low toll for such a powerful shift in the Earth's crust.

Great earthquakes, water under pressure, high risk

Mar 28, 2014

The largest earthquakes occur where oceanic plates move beneath continents. Obviously, water trapped in the boundary between both plates has a dominant influence on the earthquake rupture process. Analyzing ...

Great Alaska Earthquake shook Alaska 50 years ago

Mar 26, 2014

Electric clocks on walls in Anchorage shut down at 5:36 p.m. on March 27, 1964. Time stopped at the start of the '64 Great Alaska Earthquake, the second largest ever recorded at magnitude 9.2.

Recommended for you

Warm US West, cold East: A 4,000-year pattern

2 hours ago

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

New study outlines 'water world' theory of life's origins

4 hours ago

(Phys.org) —Life took root more than four billion years ago on our nascent Earth, a wetter and harsher place than now, bathed in sizzling ultraviolet rays. What started out as simple cells ultimately transformed ...

Agriculture's growing effects on rain

Apr 15, 2014

(Phys.org) —Increased agricultural activity is a rain taker, not a rain maker, according to researchers at Pacific Northwest National Laboratory and their collaborators at the University of California Los ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

out7x
2.5 / 5 (2) Jan 31, 2008
Quake doublets are well known, due to stress field models.

More news stories

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

UN weather agency warns of 'El Nino' this year

The UN weather agency Tuesday warned there was a good chance of an "El Nino" climate phenomenon in the Pacific Ocean this year, bringing droughts and heavy rainfall to the rest of the world.

Making 'bucky-balls' in spin-out's sights

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...