Old ice provides insights into major climate change

Mar 23, 2006
New climate data from old ice
The single segments of the ice core are labeled and stored until final analysis in laboratory. Foto: Sepp Kipfstuhl, Alfred Wegener Institute.

All cold periods throughout the past 740,000 years were associated with a significantly larger sea ice cover around the Antarctic than warm periods. At the same time, South America’s south was significantly drier and windier than nowadays, leading to a much higher dust deposition in the Antarctic.

These are some of the results published this week in the scientific journal Nature as part of a study on aerosols retrieved from an ice core 3 kilometres long, carried out by a European team of scientists with participation of the Alfred Wegener Institute for Polar and Marine Research.

Change of Antarctic sea ice cover

The ice core obtained in December 2004 as part of EPICA (European Project for Ice Coring in Antarctica) from Dome C in the eastern Antarctic (75° 06’S, 123° 21’E) covered more than eight consecutive alternations of ice ages and warm periods (glacial cycles). Thus, the core represents the longest continuous ice core archive ever retrieved. For their investigation, the EPICA scientists measured concentrations of aerosols within the ice, tracing the minute particles which had originated at the ocean surface or on continents far away and had been transported by wind to the Antarctic. The concentration of sea salt aerosol, for instance, formed in the process of seawater freezing, indicates a large scale expansion of sea ice cover around the Antarctic during all cold periods.

No increase in biological activity

Rising concentrations of small mineral dust particles during cold periods suggest a drier climate in the neighbouring continents, especially South America. The dust carried into the Southern Ocean by wind, provides additional nutrients for plankton in the surface ocean. However, analyses of sulphate aerosols from the ice core, produced after algal blooms, do not point towards an increase in biological activity in the Southern Ocean. “Our results require a revision of previous perspectives on the biological response to climate change in the Southern Ocean. At least for southern parts of that ocean, our perception about increased biological productivity during ice ages needs to be reconsidered”, suggests Hubertus Fischer, head of the chemical investigations at the Alfred Wegener Institute.

Predicting the future from viewing the past

After the analysis of temperature changes throughout the past eight climate cycles, the recent investigation of dissolved chemical components from the ice core represents another important step towards the evaluation of historical changes in climate. “Our research results reveal a similar succession of identical changes, whenever warm climate conditions alternated with cold ones over the past 740,000 years”, explains Eric Wolff of the British Antarctic Survey, primary author of the current publication. “This leads us to conclude that the Earth follows certain rules in the process of changing climates. If we can understand these rules, we will be able to improve our climate models and hence our predictions of the future.”

Source: Alfred Wegener Institute for Polar and Marine Research

Explore further: Thermonuclear supernova ejects our galaxy's fastest star (w/ video)

add to favorites email to friend print save as pdf

Related Stories

Antarctica's retreating ice may re-shape Earth

Feb 27, 2015

(AP)—From the ground in this extreme northern part of Antarctica, spectacularly white and blinding ice seems to extend forever. What can't be seen is the battle raging underfoot to re-shape Earth.

Extreme science in the Arctic

Feb 25, 2015

A research team from Northwestern University was dropped by helicopter in the desolate wilderness of Greenland with four weeks of provisions and the goal of collecting ancient specimens preserved in Arctic lakebeds.

Rare Antarctic sub-glacial eruption

Feb 18, 2015

Australian scientists are hoping a rare sub-glacial water eruption near Australia's Casey station, will reveal why meltwater is present, and the extent of a river and dam system flowing deep under the Law ...

A song of fire and ice in the ocean

Feb 10, 2015

Cyclic changes in the tilt of the Earth's axis and the eccentricity of its orbit have left their mark on hills deep under the ocean, a study published in Science has found.

Recommended for you

'Planck' puts Einstein to the test

10 hours ago

Researchers, including physicists from Heidelberg University, have gained new insights into dark energy and the theory of gravitation by analysing data from the "Planck" satellite mission of the European ...

Distant supernova split four ways by gravitational lens

11 hours ago

Over the past several decades, astronomers have come to realize that the sky is filled with magnifying glasses that allow the study of very distant and faint objects barely visible with even the largest telescopes.

Testing to diagnose power event in Mars rover

16 hours ago

NASA's Curiosity Mars rover is expected to remain stationary for several days of engineering analysis following an onboard fault-protection action on Feb. 27 that halted a process of transferring sample material ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.