Discovery of new cause of mental retardation simplifies search for treatments

Jan 24, 2008

Two to three children in 100 are born with a mental handicap. This can be caused by a genetic defect, but in 80% of the cases scientists do not know which genes are responsible. Now, VIB researchers connected to the Katholieke Universiteit Leuven, in collaboration with an Australian research team, have discovered that, in a portion of these patients, the mental retardation is caused by a twofold production of two proteins (HSD17B10 and HUWE1).

This is the first time that scientists have found that duplication of a protein leads to mental retardation. The discovery offers promising possibilities in the search for remedies, because it’s easier to reduce an over-production of a protein than to repair a defective protein or to replace a missing protein.

Defects on the X-chromosome

Mental retardation occurs in 2 - 3% of our population. This can be attributed to external factors (such as a shortage of oxygen at birth) or to defects in the DNA. When the cause is genetic (hereditary), identifying the precise defect is crucial for the patient’s medical support or for assessing the risk of having children. Scientists estimate that, in about 30% of the patients, a defect on the X-chromosome is the underlying cause. This is called X-linked mental retardation (XLMR). In over half of the XLMR patients, the gene responsible has not yet been identified.

2 proteins in the leading role

Guy Froyen and his colleagues in the Human Genome Laboratory (VIB – K.U. Leuven) teamed up with Jozef Gécz’s research group (University of Adelaide, Australia) to look for new genes that might lie at the basis of XLMR. With the aid of a very specialized molecular technology (X-chromosome specific array CGH), they studied the genes of some 300 XLMR families. In 6 of the families, they discovered that a certain part of the X-chromosome had been duplicated. Because of this duplication, two proteins, HSD17B10 and HUWE1, were produced in too high a concentration. The researchers in Leuven also found small alterations in both proteins in other XLMR patients. Through this research, they are uncovering the important role that these proteins play in the development of the brain’s memory center.

A new mechanism opens possibilities

The VIB scientists’ research is showing for the first time that the duplication of a chromosome region − whereby proteins are produced in too high a concentration − can lead to mental retardation. This is totally new information in the current understanding of genetic causes of mental retardation without attendant symptoms. Scientists have thought that defects that stop production of a protein, or cause it to be produced in a defective way, could lie at the basis of this disorder. The new discovery that too much of a protein can also cause mental retardation has a major impact on the quest for new therapies or medicines. Indeed, it’s easier to scale back an over-production of a protein than to repair a defective protein.

Consequences for detecting and treating XLMR

The research being conducted by Guy Froyen and his colleagues presents new possibilities for detecting and treating XLMR. Tests can now be designed with which scientists can look for duplication of, and defects in, HSD17B10 and HUWE1. Developing a new treatment for XLMR, however, will require further research. Scientists must first gain greater insight into the role these proteins play in the body, and more specifically, in the brain. Research models are now being set up for this effort.

Source: VIB (the Flanders Institute for Biotechnology)

Explore further: Antioxidant found in grapes uncorks new targets for acne treatment

add to favorites email to friend print save as pdf

Related Stories

Protein Malfunction Linked to a Form of Mental Retardation

Aug 03, 2010

Malfunction of a protein has been linked to a form of mental retardation that affects up to one out of every 500 males, says Nasser K. Yaghi, a Texas A&M University magna cum laude biology graduate who was selected to participate ...

A common thread links multiple human cognitive disorders

Feb 15, 2010

A new study reveals that a common underlying mechanism is shared by a group of previously unrelated disorders which all cause complex defects in brain development and function. Rett syndrome (RTT), Cornelia de Lange syndrome ...

Recommended for you

Gut bacteria are protected by host during illness

8 minutes ago

To protect their gut microbes during illness, sick mice produce specialized sugars in the gut that feed their microbiota and maintain a healthy microbial balance. This protective mechanism also appears to help resist or tolerate ...

ZEB1, Oscar for leading role in fat storage

2 hours ago

A team from Ecole polytechnique fédérale de Lausanne in Switzerland, in collaboration with ETH Zurich, has managed to decode the process of adipogenesis by identifying the precise proteins that play the ...

Study establishes zebrafish as a model for flu study

6 hours ago

In the ongoing struggle to prevent and manage seasonal flu outbreaks, animal models of influenza infection are essential to gaining better understanding of innate immune response and screening for new drugs. ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

SDMike
not rated yet Jan 25, 2008
could reducing the amount of these two proteins lead to superior mental abilities?

And, where can I buy a pill to try it out?