Deficient regulators in the immune system responsible for type 1 diabetes

Jan 24, 2008

The main regulators of the immune system, called CD4+Treg cells, are thought to be highly involved in a large range of immune diseases. The gradual reduction in their regulating capacity seems to play a critical role in the onset of type 1 diabetes, as demonstrated in the latest study by Dr. Ciriaco Piccirillo, a researcher in the Department of Microbiology and Immunology at the Research Institute of the McGill University Health Centre and the principal investigator for this project. This study was published this month in the journal Diabetes.

The immune system needs to be regulated so that it attacks only the site of an inflammation and focuses its attack on pathogens rather than on the body tissues, causing an autoimmune disease.

In a healthy patient, CD4+Treg cells deactivate any T lymphocytes, a type of immune cell, that are misprogrammed and could attack the body. Dr Piccirillo’s research indicates that in type 1 diabetic patients this control mechanism may be deficient, thereby allowing the misprogrammed T lymphocytes to proliferate and gain the ability to destroy the insulin-producing cells of the pancreas. This leads to type 1 diabetes.

“We have been able to demonstrate this in mice with type 1 diabetes, and other genetic studies have shown that this same mechanism is applicable to humans,” explained Dr. Piccirillo. Dr Piccirillo is an assistant professor at the McGill University, and the Canada Research Chair in Regulatory Lymphocytes of the Immune System. “Furthermore, the predominant role of nTreg cells leads us to believe that they are also involved in other autoimmune pathologies. Finding this common denominator among diseases that were previously thought to be unrelated is a very promising avenue for future study”, he adds.

Although the mechanism of action of CD4+Treg cells has not yet been completely unravelled, the scientific community generally accepts that this mechanism is of crucial importance to the entire immune system. Major fundamental and applied research efforts are currently being directed down this path and aim to clarify the role of CD4+Treg cells in order to develop innovative cellular therapies that could restore immune stability in patients.

“The eventual hope is to treat the cause of type 1 diabetes and other autoimmune diseases and not just their symptoms, as we do today”, says Dr Piccirillo.

Source: McGill University Health Centre

Explore further: Ebola virus has mutated less than scientists feared, study finds

add to favorites email to friend print save as pdf

Related Stories

Applications of optical fibre for sensors

9 hours ago

Mikel Bravo-Acha's PhD thesis has focused on the applications of optical fibre as a sensor. In the course of his research, conducted at the NUP/UPNA-Public University of Navarre, he monitored a sensor fitted to optical fibre ...

Silver shines as antibacterial for medical implants

Mar 24, 2015

There have been growing concerns in the global health care system about the eradication of pathogens in hospitals and other patient-care environments. Overuse of antibiotics and antimicrobial agents has contributed ...

A single-cell breakthrough

Mar 18, 2015

The human gut is a remarkable thing. Every week the intestines regenerate a new lining, sloughing off the equivalent surface area of a studio apartment and refurbishing it with new cells. For decades, researchers ...

Recommended for you

US Ebola patient's condition improves: NIH

6 hours ago

An American healthcare worker in treatment after becoming infected with the Ebola virus in Sierra Leone has improved and is now in serious condition, the National Institutes of Health said Thursday.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.