Organizing Gold Nanoparticles with DNA

Mar 22, 2006 feature

Tiny billionth-of-a-meter sized clusters of gold atoms — gold “nanoparticles” — are being widely studied by scientists. They have many useful potential applications, from carriers for cancer-treatment drugs to digital data storage. But many of these applications, particularly those in electronics, require that the nanoparticles form ordered arrays that can be hard to achieve. At Arizona State University (ASU), researchers have discovered that grids made of DNA strands are excellent templates for neatly organizing gold nanoparticles.

“The collective properties of nanoparticles are heavily dependent on how the particles are grouped. Achieving an even spacing between the particles is particularly important, but can be difficult,” said the study’s lead scientist, ASU chemist Hao Yan. “However, when deposited onto a DNA grid the particles fall neatly into patterns with little effort on our part.”

Organizing Gold Nanoparticles with DNA
(a) The two-tile system that forms the DNA nanogrids. Tile A is blue and tile B is orange. The numbers indicate the complementary “sticky” ends that allow the tiles to adhere together, with 1 pairing with 1´ and so on. The red strand on tile A is A15. (b) The DNA nanogrid, showing the A15 strand on each A tile. (c) Gold nanoparticles on the DNA grids. The zigzagged black lines surrounding the nanoparticles represent T15 strands. Credit: Hao Yan

Yan and his research group used gold nanoparticles that were five nanometers in diameter. Rather than being bare, the particles were coated with a layer of DNA “pieces,” called “T15 sequences,” which radiated from the particles’ surfaces like arms. The scientists then deposited the particles onto lattices formed by two types of cross-shaped DNA “tiles”, “A” tiles and “B” tiles, that bind together in an alternating fashion to form the DNA grid.

At regular intervals, each A tile contained a short single strand (called an “A15” strand) that protruded out of the tile surface. These strands served as tethering points for the T15-coated nanoparticles, allowing the particles to stick to the DNA surface, a bit like DNA-nanoparticle “Velcro.”

This configuration caused the nanoparticles to “self assemble” into a square pattern — each particle sitting on one A tile — with a nearly constant particle-particle distance of about 38 nanometers. The group confirmed this using an atomic force microscope, a very powerful imaging device.

However, this result, while welcomed by the scientists, wasn’t exactly what they expected.

“We were pleased that the gold nanoparticles formed a very regular square pattern, but it wasn’t quite the pattern we thought we’d see,” said Yan. “If you picture nine DNA tiles forming a square, we predicted that five particles would be organized on the square — one on each corner and one in the middle. But the pattern we observed lacked that middle particle.”

The scientists guess that this is due to the T15 sequence layer, which effectively increases the diameter of each nanoparticle and, moreover, makes each particle highly negatively charged. As a result, the nanoparticles repel each other if they are too close together, which limits the minimum particle-particle distance. Therefore, a particle located at the center of the square would violate this limit.

In future research, Yan and may try to use this organization method to form more complex nanoparticle arrays, such as denser patterns or patterns of different shapes, by altering the particles’ DNA coating.

Citation: “Periodic Square-Like Gold Nanoparticle Arrays Templated by Self-Assembled 2D DNA Nanogrids on a Surface,” Nano Lett., Vol. 6, No. 2, 248-251 (2006)

by Laura Mgrdichian, Copyright 2006

Explore further: Photo-initiated charge separation in nanobiohybrid complex

add to favorites email to friend print save as pdf

Related Stories

Intricate algae produce low-cost biosensors

Sep 01, 2014

( —Oregon State University researchers are combining diatoms, a type of single-celled photosynthetic algae, with nanoparticles to create a sensor capable of detecting miniscule amounts of protein or other biomarkers.

Plug n' Play protein crystals

Aug 29, 2014

Almost a hundred years ago in 1929 Linus Pauling presented the famous Pauling's Rules to describe the principles governing the structure of complex ionic crystals. These rules essentially describe how the ...

Recommended for you

Engineers show light can play seesaw at the nanoscale

11 hours ago

University of Minnesota electrical engineering researchers have developed a unique nanoscale device that for the first time demonstrates mechanical transportation of light. The discovery could have major ...

Engineered proteins stick like glue—even in water

Sep 21, 2014

Shellfish such as mussels and barnacles secrete very sticky proteins that help them cling to rocks or ship hulls, even underwater. Inspired by these natural adhesives, a team of MIT engineers has designed ...

Smallest possible diamonds form ultra-thin nanothreads

Sep 21, 2014

For the first time, scientists have discovered how to produce ultra-thin "diamond nanothreads" that promise extraordinary properties, including strength and stiffness greater than that of today's strongest ...

A nanosized hydrogen generator

Sep 20, 2014

( —Researchers at the US Department of Energy's (DOE) Argonne National Laboratory have created a small scale "hydrogen generator" that uses light and a two-dimensional graphene platform to boost ...

User comments : 0