The human brain: Detective of auditory and visual change

Jan 18, 2008

The human brain is capable of detecting the slightest visual and auditory changes. Whether it is the flash of a student’s hand into the air or the faintest miscue of a flutist, the brain instantaneously and effortlessly perceives changes in our environment. Several studies have indicated, however, that even a small span of time in between pre- and post-change images can disturb the brain’s ability to detect visual discrepancies.

“The pre-change scene must be memorized in some way,” explained psychologists Laurent Demany, Wiebke Trost, Maja Serman and Catherine Semal from the University of Bordeaux and the French National Center for Scientific Research (CNRS). “In the visual domain, numerous experiments have shown that even a very short gap of less than 100ms can dramatically disrupt our ability to detect a local change in complex images. Following such a gap, local changes can be detected only in very simple images.” This phenomenon is known as ‘change blindness.’

In a recent study, the aforementioned psychologists assessed the effect of time gaps on change detection in audition. Their goal was to determine if the brain uses similar mechanisms to perceive auditory changes as it does with vision. Participants had to detect a pitch change in one tone presented together with other tones. The complexity of the pre-change sound was varied, as well as the duration of the silent interval between the pre- and post-change sounds.

The experimenters reasoned that if auditory change detection is similar to the visual process, a complex sound (including many tones) should be remembered less well than a simple sound (including few tones).

The psychologists discovered, however, that this was not the case. The participants were able to remember even the most complex sounds—reaching up to 12 tones—despite the time delays.

The results of the study, which appear in the January 2008 issue of Psychological Science, a journal of the Association for Psychological Science, indicate that the brain uses more efficient mechanisms in auditory memory than in visual memory. To that extent, the human brain appears to be a keener detective of auditory change than visual change.

Source: Association for Psychological Science

Explore further: New blood test may help diagnose depression

add to favorites email to friend print save as pdf

Related Stories

NASA scientists listen to data

Sep 05, 2014

Robert Alexander spends parts of his day listening to a soft white noise, similar to water falling on the outside of a house during a rainstorm. Every once in a while, he hears an anomalous sound and marks ...

Hard of herring? Not us, say crabs (Update)

Jun 18, 2014

In new research published in the journal Proceedings of the Royal Society B, Northeastern University professor Randall Hughes and her team at the Marine Science Center in Nahant, Mass. are the first to sho ...

What frog courtship can tell us about human small talk

May 13, 2014

If you've ever heard the boisterous courtship sounds being made at night by male frogs gathered around a pond or "watering hole" to attract mates, you may have noticed some communication similarities to those ...

Ocean acidification leaving fish in the dark

Jan 30, 2014

Increasing carbon dioxide in the world's oceans could hamper fishes' eyesight, slowing their reaction times and leaving them vulnerable to predators or unable to hunt, new research has shown.

Recommended for you

New blood test may help diagnose depression

30 minutes ago

The World Health Organisation has determined that depressive disorders are the leading cause of disability worldwide. The recurrent and chronic forms of depression account for the bulk of the problem.

Mother-daughter research team studies severe-weather phobia

Sep 19, 2014

No one likes severe weather, but for some just the thought of a thunderstorm, tornado, hurricane or blizzard can severely affect their lives. When blood pressures spike, individuals obsessively monitor weather forecasts and ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

HarryStottle
not rated yet Jan 19, 2008
Surely the sound/vision differences are not that surprising. The key difference between audio and visual input is time. A photograph captures an instant and makes instant sense. Sound only makes sense if it is sustained long enough to be recognised. That process makes recognition of time based difference trivial for sound and very difficult for vision...