Scientists discover a new player in innate immune response

Jan 16, 2008

All multicellular animals have an innate immune system: When bacteria, parasites or fungi invade the organism, small protein molecules are released that eliminate the attackers. Scientists of the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) have now discovered a new molecule that plays an important role in triggering the innate immune response of the fruit fly Drosophila, mice and even humans. Their work has just been published in the journal Nature Immunology.

The cells of the innate immune system recognize hostile invaders with the aid of receptors on their surface: The moment these receptors recognize a foreign structure, they send a message, via a complicated signaling pathway, into the cell¡¦s interior. The cell then releases immunologically active proteins. The components of this signaling pathway have been conserved surprisingly well through evolution; the various signaling molecules are very similar from fly to man, both in structure and in function.

A group of scientists headed by Dr. Michael Boutros of the German Cancer Research Center, collaborating with colleagues of the Centre National de la Recherche Scientifique (CNRS) in Strasbourg, made use of this fact: Using the Nobel-prize winning method of RNA interference (RNAi), they switched off individual molecules of the signaling pathway in Drosophila and have thus come across a new member: Akirin, meaning "making things clear" in Japanese.

When they suppressed Akirin production in the immune cells of the flies, these were significantly more susceptible to bacterial infections. And when they knocked down the protein in all body cells, the fly larvae died in an early stage. Colleagues at Japan's Osaka University investigated the corresponding mouse Akirin: In mice, too, the protein fulfills the same function as in the fruit fly and in man.

Source: Helmholtz Association of German Research Centres

Explore further: Expedition finds Nemo can travel great distances to connect populations

add to favorites email to friend print save as pdf

Related Stories

Nanoscale ruler reveals organization of the cell membrane

Jun 25, 2014

After a ten-year effort, Prof. Dr. Michael Reth from the Institute of Biology III of the University of Freiburg and the Max Planck Institute of Immunobiology and Epigenetics has developed a method to investigate ...

Recommended for you

Transparent larvae hide opaque eyes behind reflections

8 hours ago

Becoming invisible is probably the ultimate form of camouflage: you don't just blend in, the background shows through you. And this strategy is not as uncommon as you might think. Kathryn Feller, from the University of Maryland ...

Peacock's train is not such a drag

10 hours ago

The magnificent plumage of the peacock may not be quite the sacrifice to love that it appears to be, University of Leeds researchers have discovered.

Iberian pig genome remains unchanged after five centuries

15 hours ago

A team of Spanish researchers have obtained the first partial genome sequence of an ancient pig. Extracted from a sixteenth century pig found at the site of the Montsoriu Castle in Girona, the data obtained indicates that ...

User comments : 0