Uranium/lead dating provides most accurate date yet for Earth's largest extinction

Sep 16, 2004
A secondary electron microscopy image of a zircon from volcanic ash, about 100 microns across

A new study by geologists at the Berkeley Geochronology Center and the University of California, Berkeley, improves upon a widely used dating technique, opening the possibility of a vastly more accurate time scale for major geologic events in Earth's history.
In a paper published this week in Science, geochemist Roland Mundil of the Berkeley Geochronology Center (BGC) and his colleagues at BGC and UC Berkeley report that uranium/lead (U/Pb) dating can be extremely accurate - to within 250,000 years - but only if the zircons from volcanic ash used in the analysis are specially treated. To date, zircons - known to many as a semiprecious stone and December's birthstone - have often produced confusing and inaccurate results.

Zircons have produced complicated data that are hard to interpret, though people have pulled dates out," said Mundil, a former UC Berkeley postdoctoral fellow now at the BGC, a non-profit scientific research institute dedicated to perfecting dating techniques for establishing the history of Earth and life on Earth. "Many of these studies will now have to be redone."

The U/Pb isotopic dating technique has been critical in dating geologic events more than 100 million years old, including volcanic eruptions, continental movements and mass extinctions.

"The beauty of this new technique is that we now can analyze samples we previously could not get an accurate date for," Mundil said. "This will have a big impact on radio-isotopic dating in general."

Mundil and his colleagues, including BGC director Paul Renne, adjunct professor of earth and planetary science at UC Berkeley, used this improved U/Pb technique to establish a more accurate date for the end of the Permian period and the beginning of the Triassic period - 252.6 million years ago, plus or minus 200,000 years. This boundary coincides with the largest extinction of life on Earth, when most marine invertebrates died out, including the well-known flat, segmented trilobites.

Based on the improved U/Pb technique, the team also established that the argon/argon (Ar/Ar) isotopic dating technique that Renne employed for an earlier study of the Permian-Triassic boundary consistently gives younger dates, by about 1 percent. Renne ascribes this to a lack of a precise measurement of the decay constant of potassium. The technique is based on the fact that the naturally occurring isotope potassium-40 decays to argon-40 with a 1.25 billion year half-life. Comparison of the amount of argon-39 produced in a nuclear reactor to the amount of argon-40 gives a measure of the age of the rocks.

Uranium, on the other hand, is so well studied that its decay constant is much better known, making the U/Pb dating technique more accurate, Mundil noted. U/Pb dating relies upon the decay of naturally occurring uranium and different isotopes of lead.

"Further application of Mundil's approach will make the geologic time scale more accurate, letting us calibrate extinctions and important events in Earth's history, ranging from 100 million to several billion years ago, with unparalleled accuracy," Renne added.

The new U/Pb date, though about 2.5 million years older than Renne reported nine years ago based on Ar/Ar dating, nevertheless confirms his conclusion that the Permian extinction occurred at the same time as a major series of volcanic eruptions in Siberia. This is strong evidence that these eruptions caused, at least in part, the global die-off, which some scientists have ascribed to a meteor impact.

Mundil noted that in 1998, one group used U/Pb dating to assign a date of 251.4 million years ago for the main pulse of the Permina extinction, in apparent conflict with the new U/Pb age. That 'age,' however, "is based on interpretation of a very complicated data set," Mundil said.

Mundil and his colleagues set out to resolve the issue, using a new zircon pretreatment invented by UC Santa Barbara isotope geologist James M. Mattinson. The problem with using microscopic zircons, which are prevalent in volcanic ash, is that the decay of uranium to lead is so energetic that the lead atoms smash through and destroy the zircon crystal structure, which apparently allows some lead to leak out of the crystal, throwing off the analysis. Geologists have tried various zircon treatments, including abrading the outer surfaces of the crystals, which are typically a tenth of a millimeter across, or leaching the crystals with strong acid. Despite these treatments, the U/Pb method still produced a wide range of dates for zircons from the same layer of ash.

Mattinson's idea was to first heat or anneal the zircons, sealing off the least damaged areas of the crystal, then using a strong reagent, hydrofluoric acid, to eat away the heavily damaged areas.

When Mundil used this treatment, the zircon dates were much more consistent, requiring no selective interpretation of the data. The calculated uncertainty is about a quarter of a million years, which means the extinction took place over a very short time, the researchers concluded.

The zircons were obtained from ash layers located in central and southeastern China. The Meishan section in the latter region is accepted as the type locality for the Permian/Triassic boundary.

Whereas the U/Pb method yields ages which are more accurate, "Ar/Ar is still king in dating rocks younger than 100 million years and is about as precise as U/Pb methods, though we need to get better data for the decay constants to establish an absolute calibration," Renne said. "As soon as that calibration is put in place, the Ar/Ar method could become as accurate as U/Pb."

Explore further: Is space tourism safe or do civilians risk health effects?

add to favorites email to friend print save as pdf

Related Stories

Will Apple Pay be mobile pay's kick-start?

2 hours ago

If anyone can get us to use our smartphones as wallets, it's Apple. That's what experts think about the recent launch of Apple Pay, the first mobile wallet to work on an iPhone.

Google execs discuss regulation, innovation and bobble-heads

4 hours ago

Eric Schmidt and Jonathan Rosenberg help run Google, one of the world's best-known, most successful - and most controversial - companies. They've just published a new book, "How Google Works," a guide to managing what they ...

Developing the battery of the future

4 hours ago

The search for the next generation of batteries has led researchers at the Canadian Light Source synchrotron to try new methods and materials that could lead to the development of safer, cheaper, more powerful, ...

Gamers' funding fuels meteoric rise of 'Star Citizen'

4 hours ago

Chris Roberts' brain spun out a grand vision: a rich, immersive galaxy; exquisite spaceships traversing between infinite star systems with thousands of computer gamers manning the cockpits, racing, dogfighting and defending ...

Recommended for you

Fifteen years of NASA's Chandra X-ray observatory

35 minutes ago

This Chandra X-ray Observatory image of the Hydra A galaxy cluster was taken on Oct. 30, 1999, with the Advanced CCD Imaging Spectrometer (ACIS) in an observation that lasted about six hours.

Confirming a 3-D structural view of a quasar outflow

58 minutes ago

A team of astronomers have observed a distant gravitationally-lensed quasar (i.e., an active galactic nucleus) with the Subaru Telescope and concluded that the data indeed present a 3-D view of the structure ...

Hubble sees 'ghost light' from dead galaxies

16 hours ago

(Phys.org) —NASA's Hubble Space Telescope has picked up the faint, ghostly glow of stars ejected from ancient galaxies that were gravitationally ripped apart several billion years ago. The mayhem happened ...

Cassini sees sunny seas on Titan

16 hours ago

(Phys.org) —As it soared past Saturn's large moon Titan recently, NASA's Cassini spacecraft caught a glimpse of bright sunlight reflecting off hydrocarbon seas.

Is space tourism safe or do civilians risk health effects?

19 hours ago

Several companies are developing spacecraft designed to take ordinary citizens, not astronauts, on short trips into space. "Space tourism" and short periods of weightlessness appear to be safe for most individuals ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.