New Argonne study may shed light on protein-drug interactions

Jan 15, 2008

Proteins, the biological molecules involved in virtually every action of every organism, may themselves move in surprising ways, according to a recent study from the U.S. Department of Energy’s Argonne National Laboratory that may shed new light on how proteins interact with drugs and other small molecules.

While scientists had expected proteins to behave similarly in regions of high and low protein concentration – from as high as 30 percent protein to less than one percent protein, respectively – they instead found that proteins had a much larger range of motion and could contort themselves into many more configurations in the dilute solutions. “The difference is comparable to skipping through an open field or being crammed into a crowded elevator,” said Argonne biochemist Lee Makowski, who headed the project.

This study represents a novel approach to characterizing the ways in which proteins move around in solution to interact with other molecules, including drugs, metabolites, or pieces of DNA, and relied on the intense x-ray beams available at Argonne’s Advanced Photon source.

The study of proteins had long focused almost exclusively on their structures, parts of which can resemble chains, sheets or helices. To determine these, scientists use high-energy X-rays to take snapshots of proteins frozen in a single conformation within a highly ordered crystal. However, biologists had made relatively little progress in using these pictures to show how proteins can reconfigure themselves in different environments.

“Proteins are not static, they’re dynamic,” Makowski said. “Part of the common conception of proteins as rigid bodies comes from the fact that we know huge amounts about protein structures but much less about how they move.”

For over a century, the standard model of protein behavior depicted them as inflexible “locks” that could interact only with a small set of equally rigid molecular “keys.” Even today’s introductory biology courses rely on descriptions of protein behavior that require them to swivel and pivot very little as they interact with other biological molecules, according to Makowski. “That’s a very powerful image but it’s not the whole story,” he said. “We’ve learned that proteins in solution can take on an entire ensemble of slightly different structures, and that, for most proteins, this ensemble grows much larger as you go to smaller and smaller concentrations.”

Makowski and his colleagues were also surprised to discover that environmental conditions strongly influence which state in this “ensemble” of conformations a protein prefers to enter. Most of a protein’s common configurations have a functional purpose, he said, as it is “not likely to twist itself into something completely irrelevant to its function.”

For example, one of the five proteins examined in the study, hemoglobin, has two favored conformations: one in which it binds oxygen very readily and one in which it does not. When hemoglobin is placed in a solution that contains a great deal of available oxygen, it spends most of the time in the former state, while if oxygen is not available, it usually flips into the latter. “We now know that in dilute solutions, hemoglobin actually can take on both conformations - even in the absence of oxygen,” he said.

By keeping all of the environmental factors the same save for the protein concentration in the solution, Makowski and his team discovered another surprising result. Scientists had known for many years that when proteins are too concentrated, they aggregate and fall out of solution. However, biochemists previously had difficulty explaining why a similar effect also occurs in overly dilute solutions.

Proteins have hydrophobic – or “water-hating” – core regions that try to avoid touching water if at all possible. Because of this characteristic, proteins will rearrange themselves to protect these regions from coming into contact with water. In dilute solutions, however, Makowski’s team discovered that proteins fluctuate far more than in concentrated solutions, and
these fluctuations expose the hydrophobic core of the proteins, making them more likely to stick to one another or to the walls of the container.

Source: Argonne National Laboratory

Explore further: Water leads to chemical that gunks up biofuels production

add to favorites email to friend print save as pdf

Related Stories

Animal-free reprogramming of adult cells improves safety

Aug 13, 2014

Human stem cells produced through genetic reprogramming are beset by safety concerns because current techniques alter the DNA of the stem cells and use material from animals to grow them. Now, A*STAR researchers ...

From eons to seconds, proteins exploit the same forces

Aug 12, 2014

(Phys.org) —Nature's artistic and engineering skills are evident in proteins, life's robust molecular machines. Scientists at Rice University have now employed their unique theories to show how the interplay ...

To watch DNA unwrap, blank out the proteins

Aug 12, 2014

Biophysics is a science of shapes – the shapes of molecules like DNA as they wrap and unwrap around protein cores, for instance. Cornell researchers have unveiled a new method for observing such processes ...

The fix is in: Team studies self-healing polymers

Aug 07, 2014

(Phys.org) —A surfboard that seals its own cracks without having to cure in the sun for days. Underwater structures that can be fixed with less work and downtime. Joints that are almost instantly stronger ...

Trapped: Cell-invading piece of virus captured in lab

Aug 06, 2014

In recent research published in the Journal of Biological Chemistry, Saint Louis University investigators report catching integrase, the part of retroviruses like HIV that is responsible for insertion of the ...

Recommended for you

Celebrating 100 years of crystallography

7 hours ago

To commemorate the 100th anniversary of a revolutionary technique that underpins much of modern science, Chemical & Engineering News (C&EN) magazine last week released a special edition on X-ray crystallography—its past, ...

Treating pain by blocking the 'chili-pepper receptor'

8 hours ago

Biting into a chili pepper causes a burning spiciness that is irresistible to some, but intolerable to others. Scientists exploring the chili pepper's effect are using their findings to develop a new drug ...

Testing the shelf-life of nuclear reactors

8 hours ago

Researchers at the University of Michigan, Ann Arbor, Los Alamos National Laboratory, Idaho National Laboratory, Idaho Falls and TerraPower based in Bellevue, Washington, have demonstrated the power of high-energy beams of ...

User comments : 0