Aggression as rewarding as sex, food and drugs

Jan 14, 2008

New research from Vanderbilt University shows for the first time that the brain processes aggression as a reward - much like sex, food and drugs - offering insights into our propensity to fight and our fascination with violent sports like boxing and football.

The research will be published online the week of Jan. 14 by the journal Psychopharmacology.

“Aggression occurs among virtually all vertebrates and is necessary to get and keep important resources such as mates, territory and food,” Craig Kennedy, professor of special education and pediatrics, said. “We have found that the ‘reward pathway’ in the brain becomes engaged in response to an aggressive event and that dopamine is involved.”

“It is well known that dopamine is produced in response to rewarding stimuli such as food, sex and drugs of abuse,” Maria Couppis, who conducted the study as her doctoral thesis at Vanderbilt, said. “What we have now found is that it also serves as positive reinforcement for aggression.”

For the experiments, a pair of mice - one male, one female - was kept in one cage and five intruder” mice were kept in a separate cage. The female mouse was temporarily removed, and an intruder mouse was introduced in its place, triggering an aggressive response by the “home” male mouse. Aggressive behavior included tail rattle, an aggressive sideways stance, boxing and biting.

The home mouse was then trained to poke a target with its nose to get the intruder to return, at which point it again behaved aggressively toward it. The home mouse consistently poked the trigger, which was presented once a day, indicating it experienced the aggressive encounter with the intruder as a reward.

The same home mice were then treated with a drug that suppressed their dopamine receptors. After this treatment, they decreased the frequency with which they instigated the intruder’s entry.

In a separate experiment, the mice were treated with the dopamine receptor suppressors again and their movements in an open cage were observed. They showed no significant changes in overall movement compared to times when they had not received the drugs. This was done to demonstrate that their decreased aggression in the previous experiment was not caused by overall lethargy in response to the drug, a problem that had confounded previous experiments.

The Vanderbilt experiments are the first to demonstrate a link between behavior and the activity of dopamine receptors in response to an aggressive event.

“We learned from these experiments that an individual will intentionally seek out an aggressive encounter solely because they experience a rewarding sensation from it,” Kennedy said. “This shows for the first time that aggression, on its own, is motivating, and that the well-known positive reinforcer dopamine plays a critical role.”

Source: Vanderbilt University

Explore further: Novel marker discovered for stem cells derived from human umbilical cord blood

add to favorites email to friend print save as pdf

Related Stories

How does the brain work? The 100-billion neuron question

Oct 27, 2010

(PhysOrg.com) -- For centuries, the brain has been the subject of countless philosophical and scientific debates. Recently, many discoveries and theories have cropped up around how the brain works, and those ...

Can you be born a couch potato?

Jul 16, 2008

The key to good health is to be physically active. The key to being active is… to be born that way? The well-documented importance of exercise in maintaining fitness has created the idea that individuals can manage their ...

Brain rewards aggression much like it does sex, food, drugs

Feb 01, 2008

New research from Vanderbilt University shows for the first time that the brain processes aggression as a reward—much like sex, food and drugs—offering insights into our propensity to fight and our fascination with violent ...

Recommended for you

New pain relief targets discovered

4 hours ago

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

Building 'smart' cell-based therapies

5 hours ago

A Northwestern University synthetic biology team has created a new technology for modifying human cells to create programmable therapeutics that could travel the body and selectively target cancer and other ...

Proper stem cell function requires hydrogen sulfide

8 hours ago

Stem cells in bone marrow need to produce hydrogen sulfide in order to properly multiply and form bone tissue, according to a new study from the Center for Craniofacial Molecular Biology at the Herman Ostrow School of Dentistry ...

User comments : 0

More news stories

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Researchers discover target for treating dengue fever

Two recent papers by a University of Colorado School of Medicine researcher and colleagues may help scientists develop treatments or vaccines for Dengue fever, West Nile virus, Yellow fever, Japanese encephalitis and other ...

Our brains are hardwired for language

A groundbreaking study published in PLOS ONE by Prof. Iris Berent of Northeastern University and researchers at Harvard Medical School shows the brains of individual speakers are sensitive to language univer ...

Study recalculates costs of combination vaccines

One of the most popular vaccine brands for children may not be the most cost-effective choice. And doctors may be overlooking some cost factors when choosing vaccines, driving the market toward what is actually a more expensive ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...