Astronomers produce first detailed map of dark matter in a supercluster

Jan 10, 2008
The violent lives of galaxies: Caught in the cosmic matter web
These images reveal the distribution of dark matter in the supercluster Abell 901/902, composed of hundreds of galaxies. The image in the center shows the entire supercluster. Astronomers assembled this photo by combining a visible-light image of the supercluster taken with the MPG/ESO 2.2-meter telescope in La Silla, Chile, with a dark matter map derived from observations with the NASA/ESA Hubble Space Telescope. The magenta-tinted clumps represent a map of the dark matter in the cluster. Dark matter is an invisible form of matter that accounts for most of the Universe's mass. The image shows that the supercluster galaxies lie within the clumps of dark matter.Credit for the Hubble images: NASA, ESA, C. Heymans (University of British Columbia, Vancouver), M. Gray (University of Nottingham, U.K.), M. Barden (Innsbruck), and the STAGES collaboration Credit for the ground-based image: ESO, C. Wolf (Oxford University, U.K.), K. Meisenheimer (Max-Planck Institute for Astronomy, Heidelberg), and the COMBO-17 collaboration

For the first time astronomers are able to see indirect evidence of dark matter and how this invisible force impacts on the crowded and violent lives of galaxies. University of British Columbia researcher Catherine Heymans has produced the highest resolution map of dark matter ever captured before.

Scientists believe that dark matter is the invisible web that houses galaxies. And as the universe evolves, the gravitational pull of this unseen matter causes galaxies to collide and swirl into superclusters.

Heymans and the University of Nottingham’s Meghan Gray led an international team to test this theory that dark matter determines the location of galaxies.

“For the first time we are clearly detecting irregular clumps of dark matter in a supercluster,” says Heymans, a postdoctoral fellow in the Dept. of Astronomy and Physics.

“Previous studies were only able to detect fuzzy, circular clumps, but we’re able to resolve detailed shapes that match the distribution of galaxies.”

Using NASA’s Hubble Space Telescope, Heymans and her team viewed an area of sky approximately the size of the full moon. They mapped the invisible dark matter scaffolding of the massive supercluster Abell 901/902 and the detailed structure of the individual galaxies embedded in it.

Abell 901/902 resides 2.6 billion light-years from Earth and measures more than 16 million light-years across.

“It is to the universe what New York is to America - a huge, fascinating but frightening place,” says Heymans.

“Dark matter leaves a signature in distant galaxies” explains study co-author Ludovic Van Waerbeke, an assistant professor in the Department of Physics and Astronomy. “For example, a circular galaxy will become more distorted to resemble the shape of a banana if its light passes near a dense region of dark matter.”

By observing this effect, astronomers can then infer the presence of dark matter. Heymans constructed a dark matter map by measuring the distorted shapes of more than 60,000 faraway galaxies located behind the Abell 901/902 supercluster. To reach Earth, these galaxies’ light traveled through the dark matter that surrounds the Abell 901/902 supercluster of galaxies and was bent by its massive gravitational field.

The Hubble study pinpointed four main areas in the supercluster where dark matter has pooled into dense clumps, totaling 10 trillion times the Sun’s mass. These areas match the known location of hundreds of old galaxies that have experienced a violent history in their passage from the outskirts of the supercluster into these dense regions.

Gray and Heymans will present their findings on Jan. 10 at the 211th meeting of the American Astronomical Society in Austin, Texas. The results are also scheduled to appear in the Monthly Notices of the Royal Astronomical Society.

Source: University of British Columbia

Explore further: Is the universe finite or infinite?

add to favorites email to friend print save as pdf

Related Stories

The Milky Way's new companion galaxies

Mar 18, 2015

When we think of cosmology, we often imagine the largest telescopes peering into the deepest space, collecting the feeble light from exploding stars or the first galaxies.

Recommended for you

Is the universe finite or infinite?

Mar 27, 2015

Two possiblities exist: either the Universe is finite and has a size, or it's infinite and goes on forever. Both possibilities have mind-bending implications.

'Teapot' nova begins to wane

Mar 27, 2015

A star, or nova, has appeared in the constellation of Sagittarius and, even though it is now waning, it is still bright enough to be visible in the sky over Perth through binoculars or a telescope.

Dark matter is darker than once thought

Mar 27, 2015

This panel of images represents a study of 72 colliding galaxy clusters conducted by a team of astronomers using NASA's Chandra X-ray Observatory and Hubble Space Telescope. The research sets new limits on ...

Galaxy clusters collide—dark matter still a mystery

Mar 26, 2015

When galaxy clusters collide, their dark matters pass through each other, with very little interaction. Deepening the mystery, a study by scientists at EPFL and the University of Edinburgh challenges the ...

Using 19th century technology to time travel to the stars

Mar 26, 2015

In the late 19th century, astronomers developed the technique of capturing telescopic images of stars and galaxies on glass photographic plates. This allowed them to study the night sky in detail. Over 500,000 ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

TimESimmons
1 / 5 (1) Jan 11, 2008
Dark Matter! - ain't no such thing

http://www.presto...ndex.htm

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.