Astronomers produce first detailed map of dark matter in a supercluster

Jan 10, 2008
The violent lives of galaxies: Caught in the cosmic matter web
These images reveal the distribution of dark matter in the supercluster Abell 901/902, composed of hundreds of galaxies. The image in the center shows the entire supercluster. Astronomers assembled this photo by combining a visible-light image of the supercluster taken with the MPG/ESO 2.2-meter telescope in La Silla, Chile, with a dark matter map derived from observations with the NASA/ESA Hubble Space Telescope. The magenta-tinted clumps represent a map of the dark matter in the cluster. Dark matter is an invisible form of matter that accounts for most of the Universe's mass. The image shows that the supercluster galaxies lie within the clumps of dark matter.Credit for the Hubble images: NASA, ESA, C. Heymans (University of British Columbia, Vancouver), M. Gray (University of Nottingham, U.K.), M. Barden (Innsbruck), and the STAGES collaboration Credit for the ground-based image: ESO, C. Wolf (Oxford University, U.K.), K. Meisenheimer (Max-Planck Institute for Astronomy, Heidelberg), and the COMBO-17 collaboration

For the first time astronomers are able to see indirect evidence of dark matter and how this invisible force impacts on the crowded and violent lives of galaxies. University of British Columbia researcher Catherine Heymans has produced the highest resolution map of dark matter ever captured before.

Scientists believe that dark matter is the invisible web that houses galaxies. And as the universe evolves, the gravitational pull of this unseen matter causes galaxies to collide and swirl into superclusters.

Heymans and the University of Nottingham’s Meghan Gray led an international team to test this theory that dark matter determines the location of galaxies.

“For the first time we are clearly detecting irregular clumps of dark matter in a supercluster,” says Heymans, a postdoctoral fellow in the Dept. of Astronomy and Physics.

“Previous studies were only able to detect fuzzy, circular clumps, but we’re able to resolve detailed shapes that match the distribution of galaxies.”

Using NASA’s Hubble Space Telescope, Heymans and her team viewed an area of sky approximately the size of the full moon. They mapped the invisible dark matter scaffolding of the massive supercluster Abell 901/902 and the detailed structure of the individual galaxies embedded in it.

Abell 901/902 resides 2.6 billion light-years from Earth and measures more than 16 million light-years across.

“It is to the universe what New York is to America - a huge, fascinating but frightening place,” says Heymans.

“Dark matter leaves a signature in distant galaxies” explains study co-author Ludovic Van Waerbeke, an assistant professor in the Department of Physics and Astronomy. “For example, a circular galaxy will become more distorted to resemble the shape of a banana if its light passes near a dense region of dark matter.”

By observing this effect, astronomers can then infer the presence of dark matter. Heymans constructed a dark matter map by measuring the distorted shapes of more than 60,000 faraway galaxies located behind the Abell 901/902 supercluster. To reach Earth, these galaxies’ light traveled through the dark matter that surrounds the Abell 901/902 supercluster of galaxies and was bent by its massive gravitational field.

The Hubble study pinpointed four main areas in the supercluster where dark matter has pooled into dense clumps, totaling 10 trillion times the Sun’s mass. These areas match the known location of hundreds of old galaxies that have experienced a violent history in their passage from the outskirts of the supercluster into these dense regions.

Gray and Heymans will present their findings on Jan. 10 at the 211th meeting of the American Astronomical Society in Austin, Texas. The results are also scheduled to appear in the Monthly Notices of the Royal Astronomical Society.

Source: University of British Columbia

Explore further: 'Eye of Sauron': Using supermassive black holes to measure cosmic distances

add to favorites email to friend print save as pdf

Related Stories

It's filamentary: How galaxies evolve in the cosmic web

2 hours ago

How do galaxies like our Milky Way form, and just how do they evolve? Are galaxies affected by their surrounding environment? An international team of researchers, led by astronomers at the University of ...

Team creates Milky Way structure simulations

Nov 18, 2014

If you took a photograph of the Milky Way galaxy today from a distance, the photo would show a spiral galaxy with a bright, central bar (sometimes called a bulge) of dense star populations. The Sun—very ...

Physicists suggest new way to detect dark matter

Nov 18, 2014

For years physicists have been looking for the universe's elusive dark matter, but so far no one has seen any trace of it. Maybe we are looking in the wrong place? Now physicists from University of Southern ...

Elusive dark matter may be detected with GPS satellites

Nov 17, 2014

The everyday use of a GPS device might be to find your way around town or even navigate a hiking trail, but for two physicists, the Global Positioning System might be a tool in directly detecting and measuring ...

Studying the physics of galaxies

Nov 03, 2014

Assistant Professor of Astronomy Evan Kirby arrived on campus in August. Born and raised in New Orleans, Kirby earned his BS in 2004 from Stanford University; his undergraduate thesis involved trips to Pasadena ...

The mystery of pulsar rarity at the center of our galaxy

Nov 06, 2014

The galactic center is a happening place, with lots of gas, dust, stars, and surprising binary stars orbiting a supermassive black hole about three million times the size of our sun. With so many stars, as ...

Recommended for you

A colorful gathering of middle-aged stars

22 hours ago

NGC 3532 is a bright open cluster located some 1300 light-years away in the constellation of Carina(The Keel of the ship Argo). It is informally known as the Wishing Well Cluster, as it resembles scattered ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

TimESimmons
1 / 5 (1) Jan 11, 2008
Dark Matter! - ain't no such thing

http://www.presto...ndex.htm

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.