Printable, Flexible Carbon-Nanotube Transistors

Jan 08, 2008 By Laura Mgrdichian feature

Scientists from the University of Massachusetts Lowell and Brewer Science, Inc. have used carbon nanotubes as the basis for a high-speed thin-film transistors printed onto sheets of flexible plastic. Their method may allow large-area electronic circuits to be printed onto almost any flexible substrate at low cost and in mass quantities.

Applications for these flexible electronics include electronic paper, RFID (radio frequency identification) tags to track goods and people, and “smart skins,” which are materials and coatings containing electronic circuitry that can indicate changes in temperature or pressure, such as on aircraft or other objects.

Printing circuits onto plastic is not a new achievement. Researchers have created printed circuits at room temperature using various semi-conducting polymers as the carrier transport medium, and many, many research groups across the globe continue to work toward perfecting the process and product.

“A problem with these polymers is that they have limited carrier mobility, meaning electrons travel through them fairly slowly. This limits the speed of the devices made from them to only a few kilohertz,” said UMass Lowell Professor Xuejun Lu, the study's corresponding researcher, to PhysOrg.com.

Modern computers, by comparison, have speeds from hundreds of megahertz to more than one gigahertz.

As part of the printed-electronics effort, carbon nanotubes have been investigated as a medium for high-speed transistors, with very promising results. But one method of depositing the nanotubes onto the plastic, “growing” them with heat, requires very high temperatures, typically around 900°C, which is a major obstacle for fabricating electronic devices.

Additionally, transistors made from single carbon nanotubes or low-density nanotube films, which are produced by depositing a small amount of a nanotube solution onto a substrate, can carry only a small amount of current. High-density films (more than than 1,000 nanotubes per square micrometer, or millionth of a meter) are better, but most are not of sufficient quality, containing carbon “soot” that covers the nanotubes' sidewalls and hinders carrier flow.

To help solve these issues, Brewer Science, Inc. developed an electronic-grade carbon-nanotube solution. The researchers deposited a tiny droplet of the solution onto a plastic transparency film at room temperature using a syringe, a method similar to ink-jet printing.

“Our electronic-grade solutions contain ultrapure carbon nanotubes without using any surfactant. Our printed transistor's carrier mobility is much higher than similar devices developed by other groups, it exhibits a speed of 312 megahertz, and can carry a large current,” said Dr. Xuliang Han, Senior Research Engineer at Brewer Science.

This research is described in the November 16, 2007, online edition of Micro & Nano Letters.

Citation: Micro & Nano Letters -- December 2007 -- Volume 2, Issue 4, p. 96-98

Copyright 2007 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Chemically driven micro- and nanomotors

add to favorites email to friend print save as pdf

Related Stories

Researchers take first pictures of baby nanotubes

Dec 02, 2014

Single-walled carbon nanotubes are loaded with desirable properties. In particular, the ability to conduct electricity at high rates of speed makes them attractive for use as nanoscale transistors. But this ...

Smart anti-icing system for rotor blades

Dec 01, 2014

In very cold climate zones, the wind can blow with tremendous force. But wind turbines have rarely been built in these regions up to now. The risk of ice formation on the rotor blades is just too high. But ...

Team grows uniform nanowires

Nov 10, 2014

A researcher from Missouri University of Science and Technology has developed a new way to grow nanowire arrays with a determined diameter, length and uniform consistency. This approach to growing nanomaterials ...

Recommended for you

Chemically driven micro- and nanomotors

Dec 17, 2014

At least since the movie "The Fantastic Voyage" in 1966, in which a submarine is shrunk down and injected into the blood stream of a human, people have been toying with the idea of sending tiny "micromachines" ...

Pyramid nanoscale antennas beam light up and down

Dec 17, 2014

Researchers from FOM Institute AMOLF and Philips Research have designed and fabricated a new type of nanoscale antenna. The new antennas look like pyramids, rather than the more commonly used straight pillars. ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

photojack
1 / 5 (4) Jan 08, 2008
Well, I'm waiting for wrist watch-sized main frame computers and servers. Everyone will need magnifying glasses to see the screen and keyboard! They'll have to engineer USB ports the size of a human hair!
Quantum_Conundrum
1 / 5 (1) Jan 08, 2008
based on Moore's Law, you should be able to fit the equivalent of a modern quad core computer into a volume the size of wrist watch in ~20-27 years.

At that time, a top of the line "PC" would be over 10,000 times as powerful as a modern PC, that is, if people find any use for such a device under those circumstances. After all, why would a "normal" person need a computer that strong? A PC that powerful would have more than enough processing power to run Star Trek style holographic environments (assuming the other technologies involved were to catch up.)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.