Mathematicians find way to improve medical scans

Jan 07, 2008

Mathematicians at the University of Liverpool have found that it is possible to gain full control of sound waves which could lead to improved medical scans, for technology such as ultra sound machines.

Working in partnership with the Indian Institute of Technology in Kanpur, they tested the numerical properties of a flat lens made out of ‘meta-material’ - a material that gains its properties from its structure rather than its composition. This material is thought to defy the laws of physics, allowing objects to appear exactly as they are rather than upside down as seen in a normal convex or concave lens.

Dr Sebastien Guenneau, from Liverpool’s Department of Mathematical Sciences, explains: “We know that light can be controlled using ‘meta-material’ which can bend electromagnetic radiation around an area of space, making any object within it appear invisible. Now we have produced a mathematical model that proves this theory also works for sound.

“This theory becomes particularly interesting when considering ultrasound, which is a sound pressure used to penetrate an object to help produce an image of what the object looks like inside. This is most commonly used in pregnancy scans to produce an image of a foetus. We found that at a particular wave frequency the meta-material has a negative refraction effect, which means that the image produced in the flat lens appears at a high resolution in exactly the same way it appears in reality.

“What surprised us most of all, however, was at the point where negative refraction occurs the meta-material becomes invisible, suggesting that if we were to use this in sonogram technology, it could be possible to make the image appear in mid-air like a hologram rather than on a computer screen. We also found that if we arranged the meta-material in a checkerboard fashion, sound became trapped, making noisy machines, for example, quieter.”

The scientists predict that the technology could be adapted for tests at higher sound frequencies such as when drilling for oil, where a more accurate image of the earth could be made in order to pin point where drilling should take place.

Source: University of Liverpool

Explore further: New study utilizes Kinect for Windows technology to teach elementary school students geometry

add to favorites email to friend print save as pdf

Related Stories

NASA engineer advances new daytime star tracker

Jan 28, 2015

Scientists who use high-altitude scientific balloons have high hopes for their instruments in the future. Although the floating behemoths that carry their instruments far into the stratosphere can stay aloft ...

Recommended for you

Super Bowl athletes are scientists at work

Jan 30, 2015

Seattle Seahawks cornerback Richard Sherman gets called a lot of things. He calls himself the greatest cornerback in the NFL (and Seattle fans tend to agree). Sportswriters and some other players call him ...

Reintegrating extremist into society

Jan 30, 2015

The UK government's increasingly punitive response to those involved in terrorism risks undermining efforts to successfully reintegrate former extremists, according to research by the University of St Andrews.

Strategies to enhance intelligence analysis

Jan 30, 2015

If you've ever watched a thriller about undercover agents, you probably have the impression that intelligence officers are models of objectivity, pragmatism and sharp, unbiased thinking. However, in reality ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.