Worth a thousand words: Hopkins researchers paint picture of cancer-promoting culprit

Jan 04, 2008

They say that a picture can be worth a thousand words. This especially is true for describing the structures of molecules that function to promote cancer. Researchers at Johns Hopkins have built a three-dimensional picture of an enzyme often mutated in many types of cancers. The results, published Dec. 14 in Science, suggest how the most common mutations in this enzyme might lead to cancer progression.

“Now that we have a better picture of the protein and how it is altered in cancer, we can envision development of mutation-specific inhibitors for cancer therapy,” says Victor Velculescu, M.D., Ph.D., associate professor at the Johns Hopkins Kimmel Cancer Center.

The enzyme known as PIK3CA is mutated frequently in many cancers, including colon, brain, stomach, breast and lung. Moreover, most of the reported mutations occur in a few so-called hotspots in the protein. All known mutations make PIK3CA more active than normal, which causes cells to divide more frequently or faster than normal to give rise to cancer.

“We tried to guess how the enzyme’s activity was affected by the mutations based on their locations along the length of the protein,” says L. Mario Amzel, Ph.D., professor and director of biophysics and biophysical chemistry at Hopkins. “But without a 3-D structure, it’s hard to do. It’s like having a puzzle but missing critical pieces.”

The research team isolated purified PIK3CA and part of another protein it normally binds to, grew crystals of the purified enzyme bound to its partner and figured out its 3-D structure using techniques that shoot X-rays through the protein crystals. Using computers, they analyzed the X-ray pattern and assembled a 3-D model of the enzyme. Onto this model the researchers then mapped all the cancer-associated mutations.

According to Sandra Gabelli, Ph.D., an instructor of biophysics and biophysical chemistry at Hopkins, the researchers originally suspected that the mutations somehow interfered with the way PIK3CA interacted with other proteins and parts of the cell and therefore must be on the outside surface of the enzyme. However, their results show that nearly all the mutations map to regions within the enzyme. “Somehow, these internal mutations must cause the protein to subtly change how it works and interacts with itself,” says Amzel. “It’s an interesting problem to solve, trying to figure out what slight shape and structural changes can make an enzyme work better-usually we’re trying to figure out why things stop working.”

The team currently is unraveling the structure of mutated PIK3CA so that they can compare mutated to unmutated to better understand how the mutations lead to cancer. Another goal is to find drugs that can specifically interfere with PIK3CA and turn it down, to develop cancer-fighting therapies.


Source: Johns Hopkins Medical Institutions

Explore further: New clinical trial launched for advance lung cancer

add to favorites email to friend print save as pdf

Related Stories

Scientists turn on fountain of youth in yeast

Nov 22, 2011

(PhysOrg.com) -- Collaborations between Johns Hopkins and National Taiwan University researchers have successfully manipulated the life span of common, single-celled yeast organisms by figuring out how to remove and restore ...

Emeritus: On the trail of aflatoxin

Dec 06, 2010

In the spring of 1960, a mysterious liver disease killed hundreds of thousands of turkeys in the United Kingdom. The outbreak was soon traced to ground peanut meal, shipped from Brazil and contaminated with ...

Compound that blocks sugar pathway slows cancer cell growth

Nov 18, 2010

Scientists at Johns Hopkins have identified a compound that could be used to starve cancers of their sugar-based building blocks. The compound, called a glutaminase inhibitor, has been tested on laboratory-cultured, sugar-hungry ...

All eyes on retinal degeneration

Feb 16, 2010

Research by Johns Hopkins sensory biologists studying fruit flies, has revealed a critical step in fly vision. Humans with problems in this same step suffer retinal dystrophies, which manifest as visual defects ranging from ...

Recommended for you

New clinical trial launched for advance lung cancer

28 minutes ago

Cancer Research UK is partnering with pharmaceutical companies AstraZeneca and Pfizer to create a pioneering clinical trial for patients with advanced lung cancer – marking a new era of research into personalised medicines ...

Physicians target the genes of lung, colon cancers

18 hours ago

(Medical Xpress)—University of Florida physicians and researchers are collaborating to map the genes of different types of cancer, and then deliver medication to attack cancer at its source.

User comments : 0

More news stories

New clinical trial launched for advance lung cancer

Cancer Research UK is partnering with pharmaceutical companies AstraZeneca and Pfizer to create a pioneering clinical trial for patients with advanced lung cancer – marking a new era of research into personalised medicines ...

More vets turn to prosthetics to help legless pets

A 9-month-old boxer pup named Duncan barreled down a beach in Oregon, running full tilt on soft sand into YouTube history and showing more than 4 million viewers that he can revel in a good romp despite lacking ...